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Visualizations have a distinctive advantage when dealing with the information overload problem: since they
are grounded in basic visual cognition, many people understand them. However, creating the appropriate
representation requires specific expertise of the domain and underlying data. Our quest in this paper is to
study methods to suggest appropriate visualizations autonomously. To be appropriate, a visualization has
to follow studied guidelines to find and distinguish patterns visually, and encode data therein. Thus, a visu-
alization tells a story of the underlying data; yet, to be appropriate, it has to clearly represent those aspects
of the data the viewer is interested in. Which aspects of a visualization are important to the viewer? Can
we capture and use those aspects to recommend visualizations? This paper investigates strategies to recom-
mend visualizations considering different aspects of user preferences. A multi-dimensional scale is used to
estimate aspects of quality for charts for collaborative filtering. Alternatively, tag vectors describing charts
are used to recommend potentially interesting charts based on content. Finally, a hybrid approach combines
information on what a chart is about (tags) and how good it is (ratings). We present the design principles
behind VizRec, our visual recommender. We describe its architecture, the data acquisition approach with a
crowd sourced study, and the analysis of strategies for visualization recommendation.
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1. INTRODUCTION
Despite recent technical advances in search engines and content provider services, in-
formation overload still remains a crucial problem of many application fields. Finding
the right piece of information in huge information spaces is a tedious, time consum-
ing task. Visualizations have shown to be an effective way to deal with the overload
problem with the opportunity to display and explore a huge set of data points simulta-
neously.

However, creating useful visual representations of data typically requires expert
knowledge. It requires knowledge of the shape and structure of the data. It also re-
quires expertise about visualization design to apply the right visual encodings. An-
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alysts rarely have knowledge of both data and visualization principles and, most of-
ten, novices lack both. Still, popular visualization tools require manual specification of
visual information, which involves: selecting variables of interest, selecting transfor-
mations, designing visual encodings [Stolte and Hanrahan 2002; Wickham 2009]; all
together a tedious task that interrupts the exploration flow [Wongsuphasawat et al.
2015]. To date, only a few approaches attempted to automatically generate visual rep-
resentations starting just from the data [Mutlu et al. 2014; Nazemi et al. 2013], al-
beit with limited success. Despite their usefulness, these approaches are ineffective in
terms of dealing with highly heterogeneous data and ignore the fact that the choice
of visual representation involves as much user preferences and needs: the methods in
popular visualization tools involved several human choices that tailor the end result
to their preferences. Beyond visualization, Recommender systems have been applied
to resolve the issue basing on knowledge about interests and previous choices of users.
A number of questions arise to this respect. Which aspects of the visualization and
underlying data are important for the user? How should these aspects be captured?
Which strategies should be used to recommend visualizations based on them?

This paper presents our research on recommendation methods and strategies to au-
tomatically generate and suggest personalized visualizations. We introduce a novel
approach –called VizRec–, that automatically generates and suggests charts according
to perceptual guidelines. Arbitrary selection of data fields and subsequent naı̈ve choice
of visual encoding inevitably lead to a combinatorial explosion. Considering just visual
encoding rules proposed in the literature [Mutlu et al. 2014] reduces the combinatorial
problem, but still leads to a large set of possibilities, valid in terms of representing the
data visually, but without considering which type serves the user’s needs best. To pro-
mote just the relevant views, appropriate filtering and recommendation strategies are
needed [Wongsuphasawat et al. 2015]. Our goal is to suggest those visualizations that
a user would select as part of her analysis workflow. Therefore, we investigate which
information lets us anticipate the choice of chart for data analysis, and how to repre-
sent such information and use it for recommendation. We investigate a collaborative
filtering approach based on a multidimensional scale to gauge different aspects of qual-
ity of the charts suggested. We analyze the effects these aspects have on the filtering
of charts. Content based filtering is analyzed as a means to suggest charts according to
the information needs of the user, by collecting vectors of tags describing what aspects
of the data each chart represents. A combination of both aspects, what a chart is about
(tags) and how good it is (ratings) is studied using a hybrid recommendation strategy.

This work contributes fundamentals on the design of a visualization recommender
(see Section 3). In particular, the design of recommendations based on perceptual
guidelines to prune the number of combinations to a manageable size, the informa-
tion design to represent user’s needs and preferences, and the studies validating dif-
ferent recommendation strategies therewith. Furthermore, an extensive evaluation of
visualization types in the context of three data repositories was conducted in Amazon
Mechanical Turk (see Section 4). The evaluation serves multiple purposes, to under-
stand the variability in choice of preferred charts, to analyze assessments of quality of
charts and their descriptions, and to study different recommendation methods.

It is our hope that these results provide motivation to contemplate these personal-
ization aspects as part of the design of visualization recommendation.

2. BACKGROUND AND RELATED WORK
Recommending visualizations is a relatively new strand of research and only few ef-
forts have been made so far to tackle the challenge. However, a broad body of research
formulates perceptual guidelines for visual communication that an expert uses to cre-
ate a visualization. Section 2.1 summarizes the visual encoding principles behind our
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approach. Rule-based systems have been developed to generate visualizations, for ex-
ample based on correspondence of data attributes and visualization properties [Stolte
and Hanrahan 2002; Cammarano et al. 2007; Mackinlay et al. 2007]. Although par-
tially successful, these systems fall short of automating the whole process and leave
decisions that require certain expertise to the user (e.g., mapping of variables to data).
Yet, the greatest flaw of these methods is not accounting for user preferences or task.

Alternatively, methods aiming for adaptive visualization build a user context to con-
figure the visual display [Nazemi et al. 2013; Ahn and Brusilovsky 2009]. These meth-
ods work bottom-up, analyzing user actions to determine her behaviour, and thereby
predict the desired configuration of the visual display. In contrast, established meth-
ods in recommender systems personalize suggestions relying on users to express pref-
erences by rating items, while tagging drives content-based recommendations. Our ap-
proach extends recommender system methods to visualization, building personalized
and content-based stages for a visualization recommender. A large number of prefer-
ences and annotations for our empirical methods were acquired with a crowd-sourced
study. Crowd sourcing studies offer the possibility to reach a high participation rate.
They have been applied in a handful of occasions to study aspects of visualization.
Section 2.5 highlights crowd based works that illuminated our study design.

2.1. Visualization Compositing Guidelines
Visualization can be considered from information theory as visually coding and com-
municating information [Chen and Jänicke 2010]. Bertin’s work on semiology offers
a systematic study of visual representations [Bertin 1983]. It defines and character-
izes visual variables that compose visualizations. Carpendale analyzes visual vari-
ables for computational information visualization [M. S. T. 2003]. Building on semiol-
ogy, Mackinlay developed a formal language to generate graphical presentations for
relational information and defined expressiveness: whether a graphical language can
express the desired information, and effectiveness: whether the graphical language
exploits the capabilities of the output medium and the human visual system [Mackin-
lay 1986]. Card and Mackinlay categorized data in terms of its attributes (e.g., nomi-
nal, ordinal, quantitative) and analyzed their mapping to visual variables in scientific
visualizations [Stuart and Jock 1997]. Engelhardt systematically analyzed syntactic
structure and information type in graphic representations [von Engelhardt 2002]. The
structure and design of any graphical representation have a perceptual connotation
with cognitive implications [Ware 2012]. These contributions build our understanding
of the visual encoding principles that help us design visualizations [Munzner 2014].
Voigt et al. documented these principles in a descriptive ontology [Voigt et al. 2013a].

2.2. Rule-Based Approaches
The evolution in the formalization of visual encoding theory and principles not only im-
proves our understanding of the process, it also contributes to the formulation of gen-
erative methods for visualization. Following Mackinlay [Mackinlay 1986], the initial
referent for the automated generation of visualizations is Polaris, the backbone engine
in the early version of Tableau [Stolte and Hanrahan 2002]. The system automatically
suggests visualizations for tables in relational databases, and coordinates the interac-
tion between them. But, the mapping of data onto visual properties of a visualization
is not performed automatically, instead it has to be formulated by the user. Conversely,
Cammarano et al. describe a method for automatic mapping of data attributes to visu-
al attributes based on schema matching [Cammarano et al. 2007]. Using this system
the user formulates a query and obtains a result set of visualizations including map,
time or scatterplot. Once selected a type of visualization, the system searches for the
attributes in the data space that best fit the requirements of the chosen visualization.
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Mackinlay et al. propose an influential, albeit conceptually different approach, in
the ShowMe [Mackinlay et al. 2007] system. It integrates a set of user interface com-
mands and functions aiming at automatically generating visualizations for Tableau.1
ShowMe attempts to help the user by searching for graphical presentations that may
address her task. Appropriate visualizations are selected based on the data properties,
such as data type (text, date, time, numeric, boolean), data role (measure or dimen-
sion) and data interpretation (discrete or continuous). We follow a similar approach
and select visualizations based on visual encoding rules instrumented in a functional
ontology with mapping algorithm to suggest visualizations for published data [Mutlu
et al. 2014]. VizRec identifies all possible visualizations for the current data in advance
and guarantees in this way the effective graphical presentation of the data based on
their characteristics.

Generative approaches fulfill the requirements of expressiveness, expressing the in-
formation in a dataset visually. Section 3.2 illustrates how visual encoding rules nar-
row down the combinatorial of visual variables to a manageable number. Effectiveness
however not only depends on the syntax and semantics of the graphical language, as
Mackinlay puts it, but also on the capabilities of the perceiver [Mackinlay 1986]. In
formative studies by Mutlu et al., users found that the initially suggested visualiza-
tions did not sufficiently emphasize the aspects they were interested in [Mutlu et al.
2014; Sabol et al. 2014]. What aspects of the data are important for the user at a given
time? And which visualization preferably represents them?

ShowMe introduces a ranking of visualizations based on static ratings (scores) glob-
ally defined for every supported chart type [Mackinlay et al. 2007]. Rather then using
global ratings, our method allows us to personalize the resulting visualizations ac-
cording to the interests of the individual user using a collaborative filtering (CF) based
approach.

The closest approach to our suggestion is a system described by Voigt et al. [Voigt
et al. 2013b], which uses a knowledge base of numerous ontologies to recommend vi-
sualizations. It is essentially a rule-based system that pre-selects visualizations based
on the device, data properties and task involved. Subsequently, the system ranks visu-
alizations following the rules concerning visualization facts, domain assignments, and
user context. One disadvantage of Voigt et al.’s approach is that both visualizations
and data inputs have to be annotated semantically beforehand. Furthermore, the pre-
selection and the ranking stages are rule-based. More importantly, a large theoretical
part of the work completely lacks empirical support. While user preferences, such as
graphical representations and visualization literacy are outlined as required in their
approach, the actual collection and validation of user preferences are tasks for future
work. In contrast, we present a complete approach using different recommendation
strategies and supported by the collection of user preferences for personalization in a
large study involving the general public, validated in an offline experiment and draw-
ing conclusions based on the empirical evidence.

2.3. Behavioral Approaches
Nazemi et al.’s system suggests visualizations based on user preferences [Nazemi et al.
2013] incrementally gathered during interaction with the visualization system in the
form of usage profiles for particular charts. Nazemi et al. follow a bottom-up approach,
analyzing user interaction via visualization to describe user behavior. In contrast, we
apply a top-down method to elicit user preferences by collecting ratings. These methods
are complementary and can be deployed together. Similar to us, Nazemi et al. utilize

1http://www.tableausoftware.com/
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a personalized approach to suggest visualizations but only target the content from
digital libraries (i.e., bibliographical notes, publications).

Ahn et al.’s work on adaptive visualization attempts to provide user-adapted visual
representation of their search results [Ahn and Brusilovsky 2009]. The user context is
a collection of user actions accumulated over time, such as the issued search queries, s-
elected documents from the search results and traversed links. The collection captures
user interests beyond the query and in turn defines a user model, which is applied
to visually highlight the relevance of a particular result set. In contrast, VizRec aug-
ments user queries with preferences in order to find the best representation of the
information behind the queried content instead of only displaying relevant results as
clusters.

Similar to Ahn et al., building preferences to adapt visualizations to user interests
has also been practiced in specific domains, for instance Vartak et al. [Vartak et al.
2014] obtain preferences by capturing user interactions with the visualization system
for digital libraries. Before recommending visualizations, the system runs analytics,
looking for behavior patterns in the output of the user and then selects the visualiza-
tions which might be interesting or useful for the active user.

Despite these notable efforts, the problem of recommending visualizations is still
insufficiently explored, especially little research has been performed on generating
and suggesting useful visualizations for heterogeneous multidimensional data.

Moreover there seems to be a gap in the literature on doing this in a personalized
manner, since previous work on recommender systems has shown that the one-size-
fits-it-all principle typically does not hold. To contribute to this small body of research
we developed and evaluated VizRec, a novel visual recommender engine capable of
recommending various types of visualizations in a personalized manner.

2.4. Generating Personalized Recommendations
One of the the most successful and prominent approaches to generate recommenda-
tions is collaborative filtering (CF) [Schafer et al. 2007; Su and Khoshgoftaar 2009]
which uses a collection of user preferences to generate recommendations. Basically,
the preferences are collections of either explicit ratings on a 1-7 scale given by user
to catalog items, or implicit ratings, which are automatically inferred from a user’s
behavior. CF uses this repository of known preferences of a group of users to define
predictions of unknown preferences for other users. Hence, the basic idea behind it is:
users that had similar tastes or behaviors (e.g., reading, watching, buying etc.) in the
past will have similar tastes or behaviors in the future.

The CF algorithms represents the entire m x n user ratings as an matrix A. Each
entry ai,j in the Matrix A represents ratings of the ith user on the jth item. To gen-
erate a top-N recommendations for the active user u it is necessary to calculate the k
most similar users or items (nearest neighbors) to user u. There are two different CF
approaches to obtain the nearest neighbors, namely (1) memory-based (user-based) CF
and (2) model based (item-based) CF .

Given matrix A as input, the memory-based CF algorithms generate for the active
user u prediction based on the ratings from similar user v, who rated the same items.
The prediction will be defined using the average ratings made by user u and user v and
is a numerical value within the same scale like user’s ratings, i.e., from 1 to 7. Model
based CF algorithms pursue the same idea, but use the similarity between items i and
j rated by the active user u. Summarized, the prediction will be defined using (1) the
average ratings made by user u and user v and using (2) the average ratings of similar
items rated by the active user u. In both cases the prediction is a numerical value and
is within the same scale like user’s ratings, i.e., from 1 to 7.
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A popular similarity measure in CF is the Pearson correlation which measures the
strength of the linear association between two variables and defines the direction (pos-
itive +1 or negative -1) of the association. To make a prediction the memory-based al-
gorithms add and subtract the neighbor’s bias from the active user’s average and use
this as a prediction for the item i, in contrast, the model-based algorithms make a pre-
diction by averaging the rating of similar items rated by the active user u. After the
predictions are calculated, the items will be sorted in decreasing order based on their
prediction value, put in so called top-n list, and recommended to the active user.

In contrast to the collaborative filtering based recommender systems (CF-RS) that s-
elect items based on the similarity of user preferences, the content-based recommender
systems (CB-RS) select items based on the correlation between the content of the items
and the user’s profile [Lops et al. 2011]. In CB-RS the item content can be represented
with a set of extracted terms or features. However, the personal comments and tags
of a user can define her profile. It is assumed that the tags, user uses to annotate the
items, describe her taste, needs and interest. For VizRec, the items are chart descrip-
tions in terms of visual encoding. Chart descriptions that a neighbor found useful will
be promoted by the algorithm.

Usually, CB-RS uses keyword based Vector Space Model (VSM) together with basic
TF-IDF weighting to determine the correlation between items and users. Transported
in VSM, each item is represented as a vector of term weights, where each weight in-
dicates the degree of association between the item and the term. Similar to this, user
profiles can be represented by profile vectors. Thus, using cosine measure the system
can reveal the similarity between a profile vector and an item. Summarized, the gen-
eration of recommendations using content-based recommender systems is based on
the matching of the attributes of an user profile (tags, comments etc.) with the con-
tent properties (extracted terms, keywords, features etc.) of an item. The goal of the
CB-RS is to select items which are similar to those the active user liked in the past.
As opposed to CF that generates recommendations based on the ratings from simi-
lar users, the CB-RS focus on the similarity of items in their properties. For VizRec,
tags describe the contents of charts, e.g., what data fields it represents, what aspects
can be compared. Keywords extracted from the user’s query describe the user’s profile
or interests. Intuitively, CB-RS can match user interests with contents of a chart for
recommendation.

However, the two presented recommender techniques, collaborative and content
based filtering, have both advantages and shortcomings. The advantages of the CF
include the content independency of the items being recommended, the low cost for
knowledge acquisition and maintenance (no knowledge engineering is required) and
the ease of use. However, this recommendation techniques suffer from so-called cold
start problem [Schein et al. 2002]. The term cold start in the context of recommender
systems generally characterizes the situations where user have not yet provided her
feedback to the system or when there is a new item transferred into the system, i.e., no
past information is available. Even though there is some feedback provided, the collab-
orative filtering mechanisms in particular sometimes fail to provide the results, since
they become unable to find the corresponding user with similar tastes. This is often
referred as data sparsity problem [Good et al. 1999] implying the collaborative filter-
ing algorithm might be unable to form recommendations due to lack of information
on user or item. In contrast, CB-RS do not require a direct user involvement in terms
of e.g., providing ratings. Furthermore, these recommender techniques are capable of
recommending items not yet rated by any user. However, the recommendations gener-
ated using content based recommender systems can be too general since the systems
might capture only a certain aspect of the content. In this case the user might be rec-
ommended items similar to those she already rated or tagged without considering her
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interest changing over the time. One obvious solution for these problems is to combine
different recommender systems to a hybrid recommender which uses the strength of
all available recommender techniques. There are different methods for a hybrid de-
sign [Burke 2002; Dietmar et al. 2010], including (i) weighted hybrids, (ii) switching
hybrids, (iii) mixed hybrids, (iv) feature combination hybrids, (v) cascade hybrids, (vi)
feature augmentation hybrids, and (vii) meta-level hybrids. Intuitively, for VizRec, a
hybrid design combines data of what a chart is about (tags) and how good it is at rep-
resenting it (ratings) to propose between recommendations. We investigate the effects
of three approaches: CF-RS, CB-RS, and Hybrid in section 4.

2.5. Crowd Sourcing Visualization Studies
Much of the data used in the studies of section 4 were collected in a crowd-sourced visu-
alization study. A concern with crowd-sourced studies is the lack of control over many
experimental conditions, which may impact ecological validity. Nevertheless, percep-
tion studies in crowd-sourced platforms are viable, as evidenced by a growing number
of successful studies in visualization and related fields [Kittur et al. 2008; Heer and
Bostock 2010; Borkin et al. 2013; Lin et al. 2013]. Borkin et al. [Borkin et al. 2013]
investigated memorability of visualizations. Considering visualizations much like a
static picture, they performed a crowd-sourced study to determine which types of visu-
alizations are better recalled. Investigating perceptual aspects of visualizations, Heer
et al. replicated the influential experiments of Cleveland and McGill in the format of a
crowd-sourced study [Heer and Bostock 2010]. Lin et al. performed a crowd-sourced ex-
periment to determine semantically resonant colors, that is colors that people associate
with entities or effects, and derive guidelines for visualization [Lin et al. 2013]. Care-
fully designed tasks are mandatory to elicit vaild data from crowd platforms. Kittur
et al. discuss several design considerations for developing the tasks in crowd-sourced
studies [Kittur et al. 2008]. One design recommendation is to have explicitly verifi-
able questions as part of a task. They found that asking tags for the content is useful
because it requires users to process the content. Our intention was for participants
to first analyze a visualization and then provide a rating for it. Hence, we used this
guideline to setup a preparatory task where participants had to accurately study a
chart and prevent rash rating. Section 4 describes a crowd-sourced study designed
to elicit user preferences related to automatically generated visualizations following
aforementioned design recommendations.

3. THE VIZREC APPROACH
VizRec responds to a query with a list of personalized visualizations ordered in a top-n
sorted manner. The query is a typical free-form text common in search engines. The
response to the query is a dataset (containing relevant documents) compiled by a fed-
erated system from various associated sources, each with its proprietary data model.
Before passing the data to VizRec, they must be structured after a common data mod-
el with a predefined schema. Within VizRec, two recommendation stages take place.
First, a rule-based system applies visual encoding guidelines to generate a collection
of visualizations appropriate for the data. Second, to obtain a top-n sorted list, the
collection is sorted and filtered according to user preferences using a recommenda-
tion strategy. This study in section 4 investigates the strategies applied in the second
recommendation stage.

Visual encoding guidelines are generic principles that establish relations between
visual components of a visualization (e.g., x � axis of a bar chart) and elements of the
data (e.g., whether a field is numeric, categorical, a location, see Section 2.1). A prepro-
cessing unit analyzes the data to structure them in terms of interesting data elements
so that visual encoding can take place. The three steps to generating personalized vi-
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Visual Patterns
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),(1 iurec
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Fig. 1: Schematic representation of the VizRec recommendation pipeline: The stages
(a), (b) and (c) illustrate the preprocessing unit. The stage (d) illustrates the visual
mapping process between the elements and the visual patterns, whereby the defined
mapping combinations are shown in stage (e). For the personalized visualization rec-
ommendation VizRec uses either the user preferences or the user and item profiles or
a combined version of both (f). Finally, the recommendations will be presented to the
user in a top-n manner (g). As shown, currently there are four type of visualizations
integrated into the system (bar chart, timeline, line chart, geo chart).

sualizations, summarized in Fig. 1, are: (1) preprocessing, (2) visual mapping, and (3)
user preference filtering. This section further details and illustrates each unit with
a real example of generating visualizations for data obtained from MovieLens.2 The
example is an excerpt of the datasets used for the study in section 4

3.1. Preprocessing
The preprocessing unit models, extracts and manages the input data. Furthermore,
it addresses the task of prior organization of the visualizations into visual patterns
that can be used to reify visualizations. The following describes how these stages go
from data to semantically enriched data and from visualization vocabulary to visual
patterns that can be used to actively derive appropriate visual encoding.

3.1.1. From Data to Semantically Enriched Data. Associated data sources, such as, Mende-
ley, Europeana, ZBW (German National Library of Economics), ACM Digital Library
etc., collect and index various kinds of information (books, journals, images, videos,
etc.) in repositories structured according to a proprietary (often closed) data model.
For instance, scientific digital libraries, define the structure of literature archives in
terms of some important metadata, such as title, abstract, author, keywords, following,
e.g., the Dublin Core metadata format.3 Unlike to these classical formats, linked data
have a graph structure with the strength to link data that may originate from different
data sources.

When it comes to working with the data from idiosyncratic data models in a holistic
way, a unified data model offers the following benefits, (i) it simplifies the automated

2https://movielens.org/
3http://www.dublincore.org/usage/documents/overview/
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Star Wars, Home Alone, etc. 

key: name
type: string ,  nominal

1980, 1990, etc.
key: year
type: date

...

name:Star Wars

genre: Sci-Fi

year:1980

...

Element

Metadata Model Preprocessed Data

Element

...

Relevant Documents

...

18.000.000, 15.000.000 etc.
key: budget
type: number 

budget: 18.000.000

Sci-Fi, Comedy, etc.
key: genre
type: string , categorical

name:Home Alone
year:1990

budget: 15.000.000
genre: Comedy

(a) (b) (c)

...

Fig. 2: Preprocessing: The input data (a) for VizRec are structured following a meta-
data model (b). The preprocessing unit is responsible, first, for the identification and
extraction of the metadata elements, and second, for the data type analysis on the
values of the metadata elements (c).

data processing, e.g., in terms of extracting information, and (ii) enables interoperabil-
ity with other applications, e.g., the visualization tools. For VizRec, the input data is
structured in a common data model following the specification in [Orgel et al. 2015]
(see Fig. 2 (b)). The unified model organizes metadata elements extracted from the o-
riginal sources (such as title, content information, document type and attributes). A
mapping ontology defines the relation for each concrete metadata format and the uni-
fied data model used in VizRec.

Aforementioned digital repositories have specific services to obtain their data with
varios interfaces for the access, such as JSON, RDF, or XML. In contrast, linked data
have a graph structure connecting data that originate from different sources. Data ob-
tained from e.g., DBpedia or MovieLens are translated locally in the common metadata
model. Hereby, the responses to the user’s query are cached and separately translated
into the unified model. Finally, a simple matching operator merges the meta data of
each dataset together and presents them as a single dataset. As example, a user inter-
ested in budget and income of movies at the end of last century obtains Listing 1 for
the query Top 10 successful movies filmed in 1960, 1970, 1980 and 1990. The dataset
merges movie name, genre and year obtained from MovieLens with budget and gross
information obtained from DBpedia. Aforementioned metadata mapping methods are
beyond the scope of VizRec and are only mentioned here for completeness. For further
details, refer to [Orgel et al. 2015].

Once the data are obtained, the preprocessing unit of VizRec carries out four im-
portant technical steps. First, metadata extraction, the metadata elements (i.e., movie
name, genre, year, budget and gross) are automatically identified and their values ex-
tracted following the metadata model (see Fig. 2 (c)). Second, data type categorization,
extracted values are collected in series and a data analysis step categorizes them in-
to standard data types, such as categorical, temporal and numerical – represented by
primitive data types string, date and number, respectively (see Fig. 2 (c)). Third, se-
mantic extraction, if required, using gazetteer lists specialized data types are derived,
e.g., spatial information like coordinates are obtained for metadata elements belonging
to the term country. Fourth, enrichment, extracted elements enriched with categorized
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Listing 1: Exemplary input data for the VizRec obtained from MovieLens and enriched
with data from DBpedia.
<?xml version=”1.0” encoding=”UTF�8” standalone=”yes” ?>
<description> The top 10 successfully movies filmed at 1960, 1970, 1980 and 1990</description>
<results>

<result>
<facets>

<provider>DBpedia</provider>
<type>Linked Open Data</type>
<moviename>Star Wars: Episode V</moviename>
<genre>Sci-Fi</genre>
<year>1980</year>
<budget>18.000.000</budget>
<gross>290.158.751</gross>

</facets>
</result>
<result>

<facets>
<provider>DBpedia</provider>
<type>Linked Open Data</type>
<name>Home Alone</name>
<genre>Comedy</genre>
<year>1990</year>
<budget>15.000.000</budget>
<gross>285.761.243</gross>

</facets>
</result>
...

</results>

values are passed to the mapping algorithm to execute the mapping process (see Sec-
tion 3.2).

3.1.2. From Visualization Vocabulary to Visual Patterns. Formally, a visualization can be
broken down in a number of r visual components, each of which encodes a single piece
of information visually [Bertin 1983]. One can naı̈vely think that every visual compo-
nent may encode any kind of data. Thus, the possible number of combinations for one
visualization is the permutation relation [Gilson et al. 2008]:

C

n
r =

n!

(n� r)!
(1)

, where n is the number of metadata elements in the data set (i.e., number of fields).
For example, a simple bar chart has three visual components: x, y, and color. The
example dataset in Listing 1 has five metadata elements (n = 5), so the total number
of combinations for the bar chart (r = 3) is:

n!

(n� r)!
=

5!

(5� 3)!
= 60 (2)

So, the number of options a user would have to consider is rather high even for a
simple chart, without considering alternative visualizations. The fact is that many of
these combinations are perceptually incorrect, since visual components are often suit-
ed to represent only certain metadata given by the perceptual properties of the com-
ponent and the characteristics of the metadata [Bertin 1983]. To prevent this, VizRec
uses visual patterns to explicitly define which metadata element is related to which
visual component of a visualization type [Rahm and Bernstein 2001].
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VA Vocabulary Components

Bar chart
Visual Component: x-Axis

Supported types: string, date

Visual Component: y-Axis
Supported types: number

Timeline
Visual Component: x-Axis

Supported types: date

Visual Component: y-Axis
Supported types: string, number

Bar chart

Visual Patterns

(1) {x-Axis: string, y-Axis: number}

(2) {x-Axis: date, y-Axis: number}

Timeline
(1) {x-Axis: date, y-Axis: string, color: string}

Visual Component: color

Supported types: string, location

(2) {x-Axis: date, y-Axis: string, color: location}

(3) {x-Axis: date, y-Axis: number, color: string}

(4) {x-Axis: date, y-Axis: number, color: location}

Visual Component: color
Supported types: string

(3) {x-Axis: string, y-Axis: number, color:string}

(4) {x-Axis: date, y-Axis: number, color:string}

(5) {x-Axis: date, y-Axis: string, color: location}

...
...

Fig. 3: Visual patterns for the bar chart and timeline defined in the description vocab-
ulary.

In VizRec visualizations are organized in a Visual Analytics Vocabulary4 (VA vocabu-
lary) representing visualizations in a common persistence model that can be reused by
various technologies. The VA vocabulary is an explicit conceptualization that describes
the semantics of visualizations in pragmatic, simple facts that will aid the sensible
mapping from data. It consists of two parts: (1) the model of an abstract visualization
specifying structural components that any concrete visualization may have: (a) name
(b) visual components, (c) description, and (2) the model of a concrete visualization re-
fining the abstract visualization model by reification of the visual components. Hence,
visual components are characterized by: (i) data type: set of primitive data types that a
visual component supports, (ii) occurrence: cardinality, i.e. how many instances are al-
lowed for the visual component, (3) persistence: whether a visual component is manda-
tory for the concrete visualization. Currently, the VA Vocabulary is used to describe
four type of visualizations– bar chart, timeline, line chart and geo chart. Nevertheless,
the integration of additional visualizations can be realized in a straightforward way
by just following the specification of the vocabulary as shown in Listing 2.

Listing 2 describes the bar chart, with its three visual components, x, y and color,
each of which has its own unique properties. Concretely, (i) each visual component
supports a specific data type, (ii) the visual component x and y are mandatory, color is
optional, and (iii) each component has to be instantiated only once to be able to produce
valid combinations (in further text: mapping combinations or just mappings).

Visual patterns result from the fact that, depending on the properties of a visual-
ization, a visual component can support different data types in different combinations.
Having described visualizations in terms of visual components and supported data
types, visual patterns can be derived, each describing one possible configuration of a
visualization [Mutlu et al. 2014] (see Fig. 3). In order words, the patterns specify the
types of data that are required for each visualization to be instantiated. For instance,
following bar chart description in Listing 2, two possible patterns for the bar chart are
(1) {x� axis : string, y � axis : number} and (2) {x� axis : date, y � axis : number} representing
the fact that the x� axis can accept both type of data but not at the same time.

In addition, the presence of an optional visual component results in two ad-
ditional patterns, concretely (3) {x� axis : string, y � axis : number, color : string}, and (4)
{x� axis : date, y � axis : number, color : string} . These patterns will be instantiated only if

4http://code.know-center.tugraz.at/static/ontology/visual-analytics.owl
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Listing 2: Description of the Bar chart using the VA Vocabulary.
<rdf:RDF xmlns:rdfs=”http://www.w3.org/2000/01/rdf�schema#” xmlns:vo=”http://eexcess.eu/visualisation�ontology#

” xmlns:va=”http://code�research.eu/ontology/visual�analytics#” xmlns:rdf=”http://www.w3.org/1999/02/22�rdf
�syntax�ns#”>

<va:BarChart rdf:about=”http://eexcess.eu/visualisation�ontologyBarchart”>
<rdfs:label>barchart</rdfs:label>
<vo:hasVisualComponents>
<vo:Axis rdf:about=”http://eexcess.eu/visualisation�ontologyBarChartXAxis”>
<rdfs:label>x-Axis</rdfs:label>
<vo:supportedDataType rdf:resource=”http://eexcess.eu/visualisation�ontology#string” />
<vo:supportedDataType rdf:resource=”http://eexcess.eu/visualisation�ontology#date” />
<va:hasPersistence rdf:resource=”http://code�research.eu/ontology/visual�analytics#Mandatory” />
<va:hasOccurrence rdf:resource=”http://code�research.eu/ontology/visual�analytics#One” />

</vo:Axis>
</vo:hasVisualComponents>
<vo:hasVisualComponents>
<vo:Axis rdf:about=”http://eexcess.eu/visualisation�ontologyBarChartYAxis”>
<rdfs:label>y-Axis</rdfs:label>
<vo:supportedDataType rdf:resource=”http://eexcess.eu/visualisation�ontology#number” />
<va:hasPersistence rdf:resource=”http://code�research.eu/ontology/visual�analytics#Mandatory” />
<va:hasOccurrence rdf:resource=”http://code�research.eu/ontology/visual�analytics#One” />

</vo:Axis>
</vo:hasVisualComponents>
<vo:hasVisualComponents>
<vo:Axis rdf:about=”http://eexcess.eu/visualisation�ontologyBarChartColor”>
<rdfs:label>color</rdfs:label>
<vo:supportedDataType rdf:resource=”http://eexcess.eu/visualisation�ontology#string” />
<va:hasPersistence rdf:resource=”http://code�research.eu/ontology/visual�analytics#Optional” />
<va:hasOccurrence rdf:resource=”http://code�research.eu/ontology/visual�analytics#One” />

</vo:Axis>
</vo:hasVisualComponents>
<va:hasDescription>
<rdfs:label>Bar Chart is a diagram that presents the numerical values of variables by the length of

bars.</rdfs:label>
</va:hasDescription>

</va:BarChart>
</rdf:RDF>

there is a value that exists for color, otherwise the system would select patterns (1)
and (2).

Using visual patterns, the system is able to generate all mapping combinations
which are plausible for the data and perceptually correct regarding visual encoding
guidelines. In following we further detail how VizRec operates to instantiate the ap-
propriate visual patterns– the visual mapping process.

3.2. Visual Mapping
The visual mapping process can be considered a schema matching problem [Rahm and
Bernstein 2001]. The basic idea behind schema matching is to figure out a semantic
relevance between two objects in schemas under consideration. The result is a mapping
comprising a set of elements, each of which indicates that certain elements of schema
S1 are related to certain elements of schema S2. In our case, the schemas we deal with
are on the one hand the metadata model which describes the semantics of the input
data, and on the other hand the VA Vocabulary which describes the semantics of the
visualizations. Hence, the schema mapping in our context produces mappings each of
which describes the correspondence between a metadata element and a visual compo-
nent of a visualization to define a possible configuration. In the following paragraphs
we describe in detail this process.

The relation from elements of the input data to components of a visualization is
valid only if we can establish syntactic correspondences between the metadata and the
visualizations. One possibility to identify this is to verify the data type compatibility.
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Visual Patterns
Bar chart s pattern (1)Star Wars, Home Alone, etc. 

Visual Component: x-Axis
Supported types: string

Visual Component: y-Axis
Supported types: number

Bar chart s pattern (2)
Visual Component: x-Axis

Visual Component: y-Axis

Supported types: date

...

key: name

type: string ,  nominal
1980, 1990, etc.

key: year

type: date

..
.

Preprocessed Data

18.000.000, 15.000.000 etc.
key: budget

type: number 
Sci-Fi, Comedy, etc.

key: genre

type: string , categorical Supported types: number

(c) (d) (e)

Mapping Combinations
Barchart:
1. mapping combination
x-axis: name
y-axis:budget

2. mapping combination
x-axis: genre
y-axis:budget

Bachart:
1. mapping combination
x-axis: year
y-axis:budget

2. mapping combination
x-axis: year
y-axis:budget

Visualizations

......

...

Fig. 4: Visual mapping process.

Data type compatibility in our context means having exactly the same data types,
conforming to the XSD data type definition.5 The preprocessing unit provides patterns
for visualizations and a common model for the input data both including the data types
of their elements. From the specifications of the visual patterns, the mapping operator
compares the data types of the visual components and metadata with each other and
builds a list of plausible mappings (see Fig. 4 (c) and (d)).

Beyond the data type compatibility, a valid mapping needs to account for structural
compatibility, since visualizations have either fixed or varying number of visual com-
ponents. To generate a visualization, the mapping operator has to instantiate every
mandatory visual component while the pattern(s) including optional components can
be ignored if there is no corresponding data element therefor. Formally, each pattern
i defines for each visual component j which rj metadata element should be selected
from nj metadata elements:

nj !

rj !(nj � rj)!
=

✓
nj

rj

◆
= C

nj
rj (3)

Note that nj is a subset of n that complies with data type compatibility for the j

visual component. To obtain the total number of combinations Mi, generated for a
particular pattern i, we multiply every suitable

�
nj

rj

�
notation of a pattern:

Mi =
Y

C

nj
rj (4)

Thus, the final number of combinations M for a visualization is nothing else then
the sum of every Mi:

M =
X

{Mi} (5)

Continuing the example about successful movies, VizRec considers the following fact-
s: (i) the underlying dataset contains two string values (movie name, genre), one date
(creation year), and two numbers (budget and gross), (ii) only the patterns, which ac-
cept categorical/nominal (string), temporal (date) and numerical values (number) are
appropriate. Thus, geographical visualizations will not be further considered by the
system.

5http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
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(a) Generated using Bar chart s pattern 1

(c) Generated using Bar chart s pattern 3 (d) Generated using Bar chart s pattern 4

(b) Generated using Bar chart s pattern 2

Fig. 5: Some of the bar chart combinations generated for the dataset movies using the
bar chart patterns (1), (2), (3) and (4). The patterns are listed in Table I.

According to the pattern description from Listing 2, bar chart complies with facts
(i) and (ii). Using visual patterns, the system selects bar chart pattern (1) counting
exactly one element with data type string and one with data type number, producing:

M1 = C

2
1 ⇥ C

2
1 =

✓
2

1

◆
⇥

✓
2

1

◆
= 4 (6)

mapping combinations, containing e.g., {x� axis : movie name, y � axis : budget} (see
Fig. 5 a). For pattern (2) the system selects one metadata element with the data type
date and one with datatype number, obtaining

M2 = C

1
1 ⇥ C

2
1 =

✓
1

1

◆
⇥

✓
2

1

◆
= 2 (7)

mapping combinations containing e.g., {x� axis : creation year, y � axis : budget} (see
Fig. 5 b). For pattern (3) VizRec selects one element with data type string, one with
data type number and another one with data type string, so that

M3 = C

2
1 ⇥ C

2
1 ⇥ C

2
1 =

✓
2

1

◆
⇥

✓
2

1

◆
⇥

✓
2

1

◆
= 8 (8)

mapping combinations are determined containing e.g.,
{x� axis : movie name, y � axis : budget, color : genre} (see Fig. 5 c). Note, these
mappings contain redundant mapping, that is, an element can be selected for more
than one visual component. For instance, for this pattern the element movie name can
be mapped once on the x � axis and once on the color (see Table I Pat.num (3)) since
both components support the datatype string. The benefit of this mapping condition is
the definition of more customized legends for the visualizations then those generated
by default.
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Pat.
num.

Visual Patterns Mappings Vis.

1 {x-axis:string, y-axis:number}
{x-axis:movie name, y-axis:budget}
{x-axis:movie name, y-axis:gross}
{x-axis:genre, y-axis:gross}
{x-axis:genre, y-axis:budget}

2 {x-axis:date, y-axis:number}
{x-axis:creation year, y-axis:budget}
{x-axis:creation year, y-axis:gross}

3 {x-axis:string, y-axis:number, color:string}
{x-axis:movie name, y-axis:budget, color:genre}
{x-axis:movie name, y-axis:gross, color:genre}
{x-axis:movie name, y-axis:budget, color:movie name}
{x-axis:movie name, y-axis:gross, color:movie name}
{x-axis:genre, y-axis:budget, color:movie name}
{x-axis:genre, y-axis:gross, color:movie name}
{x-axis:genre, y-axis:budget, color:genre}
{x-axis:genre, y-axis:gross, color:genre}

4 {x-axis:date, y-axis:number, color:string}
{x-axis:creation year, y-axis:budget, color:movie name}
{x-axis:creation year, y-axis:gross, color:movie name}
{x-axis:creation year, y-axis:budget, color:genre}
{x-axis:creation year, y-axis:gross, color:genre}

Table I: Mapping combinations defined for the exemplary dataset movies using bar
chart’s visual patterns (1)-(4). The visualizations shown in the last columns are gener-
ated for the first mapping combination of each pattern, to give an example for instan-
tiated mapping combinations.

Applying the same approach for pattern (4) results in 4 possible mapping combi-
nations containing e.g., {x� axis : creation year, y � axis : budget, color : movie name}
(see Fig. 5 (d)). The total number of perceptually valid combinations is 18 (see Equa-
tion 5 and Table I). Comparing with the naı̈ve result (60) the number of visualizations
to consider is reduced considerably. Yet, the example concentrated only on a single
chart (bar charts), each type of chart adds another number of visualizations that may
be useful for the user. Furthermore, some users may be more inclined to use one type of
chart than other to spot what they are looking for in the data. In the following section
we consider recommendation strategies to filter results according to user preferences.

Having obtained all valid mapping combinations (see Fig. 1 (e)), the mapping oper-
ator maps the values of the selected metadata elements to the corresponding visual
components of a visualization and presents them to the user as a set of appropri-
ate visualizations. The various mapping combinations present user’s data in different
analysis scenarios and thus can cater to wider range of user needs and interests.

The pseudo-code in Listing 1 summarizes the essential steps performed by the map-
ping algorithm. Initially, for a given dataset (cf., Fig. 1), relevant visual patterns
are identified from the existing visualization collection. Based on those patterns, the
schema mapping part of the algorithm identifies the concrete configurations for visu-
alizations that are compatible with the data provided, in the data types and the struc-
ture. Candidates complying with these rules are valid mapping combinations that are
in further steps of the VizRec pipeline used for the detailed, personalized filtering.

3.3. User Preference Filtering
Visual patterns together with rule-based mapping algorithm generate all mapping
combinations which are plausible for the data. However, not all of them represent what
the user needs or prefers. For example, the bar chart in Table II with the item-id 541
shows the yearly distribution of each movie’s budget (generated for bar chart pattern
(2)) without displaying to which movie the budget belongs to. Thus better mechanisms
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ALGORITHM 1: Simplified algorithm for determining appropriate mapping combinations
Data: set(data element) // retrieved and preprocessed content from data sources

Result: set(mapping combination)
// result set

set(mapping combination) empty set;

// map containing visualizations and their visual patterns

map(visualization, set(visual pattern)) empty map;

// first step: collect all available visual patterns

set(visualization) get all visualizations from repository;
while set(visualization) not empty do

visualization take current visualization from the set;
set(visual components) get visual components from visualization;

// The generation is based on component attributes: occurrence, persistence

set(visual pattern) generate patterns out of set(visual components);

// Store generated patterns

map(visualization, set(visual pattern)) append pair (visualization,set(visual pattern));

// second step: identify mappings based on visual patterns

while map(visualization, set(visual pattern)) not empty do
visualization take current vis. pair (visualization, set(visual pattern)) from set;
while set(visual pattern) not empty do

visual pattern take current pattern from set;
while set(data element) not empty do

// The structure is evaluated based on a number of visual components

// within a pattern

if structural match between (visual pattern) and (data elements) then
// Datatype match is performed between visual components

// and individual elements of the current data

if datatype match between (visual pattern) and (data elements) then
// Elements of the current data are mapped (linked)

// to the corresponding visual components of the current pattern

mapping combination map elements to visual components;
set(mapping combination) append mapping combination;

else
continue;

else
continue;

for selecting the visualization are required. The first approach we investigate is collab-
orative filtering (CF) [Schafer et al. 2007], which relies on explicit feedback provided
by the user in form of ratings. Ratings alone do not tell much about the content of the
data that a visualization represents. To take this aspect into account, we investigate
a method that is known as content-based filtering [Lops et al. 2011] in the literature.
Content-based filtering requires meta-data information, e.g., in the form of keyword-
s or tags applied by the user describing each visualization. In the VizRec approach,
we relay on tags, as they have been shown to be useful in many recommender or in-
formation retrieval scenarios [Larrain et al. 2015]. Finally, a VizRec includes a hybrid

ACM Transactions on Interactive Intelligent Systems, Vol. V, No. N, Article A, Pub. date: January 2016.



VizRec: Recommending Personalized Visualizations A:17

Item-id User-id Rating Item
254 1

6
10

4.0
4.5
5.5

960 1
6
10

6.5
5.5
4.0

541 1
6
10

2.5
3.0
3.5

721 1
6
10

1.0
2.5
2.0

360 6
10

5.5
6.5

... ... ... ...

Table II: Input data for calculation of the k-nearest neighbors and generating predic-
tions for the active user, including item-id, user-id and ratings.

recommendation approach, that combines information on what a visualization is about
(tags) and how good it is (ratings). This section further provides technical details of the
recommendation strategies included into ViZRec.

3.3.1. Collaborative Filtering. To filter the mapping combinations M based on the user
preferences (see Fig. 1 (f)), we employ a simple user-based collaborative filtering (CF)
approach utilizing ratings [Su and Khoshgoftaar 2009]. The basic idea behind CF is to
find a user with similar preferences to the active user, who has rated the item x that
the active user has not seen yet. Hence, the average ratings of the similar users are
applied to predict if the active user will prefer the item x. In a nutshell, the algorithm
needs to identify users similar to the active user, k-nearest neighbors respectively, who
share active user’s tastes. To calculate the k-nearest neighbors, we construct a m ⇥ n

matrix A where each entry ai,j represents the rating of the ith user on the jth item
(mapping combination). Each rating is a numerical scale, e.g., from 1 to 7. Having
constructed the matrix A we employ Pearson nearest neighbor algorithm to calculate
the similarity between the active user u and the user v using the Equation 9:
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sim(u, v) =
⌃i2I(ru,i � r̄u)(rv,i � r̄v)p

⌃i2I(ru,i � r̄u)2
p

⌃i2I(rv,i � r̄v)2
(9)

, where I is the set of items rated by users u and v, and r̄u is the average rating of
the active user u. Once the k-nearest neighbors are detected, VizRec combines the
preferences of the neighbors to generate the predictions or the top-n recommendations
for the active user, the set R respectively, following the Equation 10:

predcf (u, i) = r̄u +
⌃v2Nsim(u, v)(rv,i � r̄v)

⌃v2Nsim(u, v)
(10)

, where r̄u and r̄v are the average ratings of the user u and v. To do so, VizRec selects
from the set of M only those mappings which the active user might prefer and presents
them to her as recommendations (see Fig. 1 (g)). The list of recommendations R for the
active user is nothing else than a subset of M .

The cooperation of the mapping algorithm with CF offers two important benefits:
first, the definition of perceptually valid visualizations for the active user’s dataset,
and second, the recommendation of only the valid visualizations which the active user
might prefer.

To clarify this, we consider our example about the top-ranked movies again. The
visual mapping unit defines for this dataset a list with 18 possible bar chart config-
urations. However the system contains also alternative visualizations, such as time-
line, line chart which are also appropriate for the current dataset.6 When including
their mapping combinations, 6 for timeline and 4 for line chat respectively, the total
sum of available visualizations would be 28. Since the preferences of the active user
u are known by the system, it can reduce the list on those to which the user’s prefer-
ences matches the best. To do so, the system first, performs a k nearest neighborhood
search by employing the Pearson correlation measure to detect those users who are
the most similar one to the active user u. Table II shows an excerpt of our example
rating database containing ratings for items (visualizations) which has been seen by
the active and/or other users whereby the active user is assigned the user-id 1. Second,
using the Equation 9 for Pearson correlation and the Table II with item-ids, user-ids
and their ratings, the system reveals following similarity values for the active user u:

sim(1, 6) =
(4.0� 3.5)(4.5� 4.2) + ...+ (1.0� 3.5)(2.5� 4.2)

p
(4.0� 3.5)2 + ...+ (1.0� 3.5)2

p
(4.5� 4.2)2 + ...+ (2.5� 4.2)2

= 0.9806

sim(1, 10) =
(4.0� 3.5)(5.5.0� 4.3) + ...+ (1.0� 3.5)(2.0� 4.3)

p
(4.0� 3.5)2 + ...+ (1.0� 3.5)2

p
(5.5� 4.3)2 + ...+ (2.0� 4.3)2

= 0.6154

Having detected the similarity values for user6 and user10 the system tries to predict
if the active user u might prefer the visualization with the id 360 she has not seen
before:

predcf (1, 360) = 3.5 +
0.9806(5.5� 4.2) + 0.6154(6.5� 4.3)

0.9806 + 0.6154
= 5.1465

Considering the prediction value for the item 360, we can assume that this item
might be one of the ten items being recommended to the active user. To finally define
the list of top ten recommendations, we apply this approach to every user and item the
active user has not seen before. Using the similarity values, we rank each item i of the

6Geo charts were not generated, since the dataset does not contain spatial information
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k most similar users to the active user and present her only the visualizations with
the highest ranking.

3.3.2. Content-based Filtering. The CF recommendation strategy (CF-RS) needs the
user’s interests beforehand, which should be in common to at least a few other user.
When CF-RS cannot find similar users, that is for instance the case when the user
or the item is new to the system a content-based recommender (CB-RS) is a suitable
alternative. The simplified workflow of the VizRec CB-RS is illustrated in the main
Figure 1 (g). In a nutshell, the VizRec CB-RS generates recommendations by analyzing
the relevant content, concretely, the information we know about the active user and
the information we collected to date (other users and their tags in repository) for some
items. Following the basic principles of CB-RS, the recommendations are produced
based on the content similarity, in our case between the interests of the active user –
i.e., her profile, and already tagged items (visualizations).

User and Item Profiles: Usually, a user annotates items with tags which describe
the content of the items and thus serve as appropriate inputs to define the item
profile [Bogers and van den Bosch 2009; Lin et al. 2015]. In a nutshell, the item profile
contains information about visualizations in form of tags supplied by users in the
past. In the case of VizRec tags describe visualizations and the content they visualize.

For an unknown user, who has not rated or annotated any visualization, the only
information available is the meta-data of the dataset result. The user profile is then
built as follows: Each visualization generated is described with a mapping from meta-
data to visual components, meta-data elements provide basic information about the
contents of the visualization, if a user has provided tags already, they are also included
in her profile. In summary, we build a profile of an active user based on (i) the current
set of mapping combinations (visualizations) she observes from the Visual Mapping
stage, including (if it exists) (ii) the visualizations the user tagged in the past. For
instance, when the user’s dataset is about the movies and the mapping combination
{x� axis : movie name, y � axis : budget, color : genre} (cf. Figure 5 (c)) is suggested
for the current dataset, VizRec would use the related meta-data elements as input to
define the active user’s profile, i.e., in this case movie name, budget and genre for the
elements x-axis, y-axis and color respectively and the tags most popular, Hollywood
and comedy given by the active user in the past.

To relate the active user profile with the content in the repository, we build an item
profile by aggregating the tags of all user per item (visualization). The benefits of the
tag aggregation among all users is (i) to obtain more valuable information about indi-
vidual items than focusing just on information from a single source and (ii) to consider
the preferences of the community and not just those of a single user which in turn
increases the likelihood that we select items which are relevant for the active user
(cf., [Bogers and Van den Bosch 2009]).

One important concern regarding tags for the user and item profiles is a normal-
ization process which is executed before storing tag information in repository. This
process involves, (i) removing of commoner morphological and inflectional endings
from English words (e.g., movies �! movie, comedies&comedy �! comedi) using
the Porter stemmer algorithm [Karaa and Gribâa 2013], (ii) removing of stop words
(standard tokenizer) and punctuations (keyword tokenizer), and finally (iii) the
lowercase filtering. This step helps to avoid that the words represented in various
language forms are interpreted differently [Lops et al. 2011].

Similarity Estimation and Item Ranking: To determine the correlation between
visualizations and users, we transform the content of the user profiles and item
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profiles into the Vector Space Model (VSM) with the TF-IDF (Term Frequency-Inverse
Document Frequency) weighting schema. As mentioned in section 2.4, VSM is a
common technique to vectorize the content, concretely the visualizations, and in this
way to enable their analysis, such as classification and clustering for example. In our
case, VSM consists of user profile (mapping combinations) and item profile (tags),
both represented in form of vectors. Using this scheme, each mapping combination
(e.g., movie name, budget, genre) is defined as an n-dimensional vector, where each
dimension corresponds to a tag, or more precisely, to the TF-IDF weight of that
particular tag. To clarify this, let M = {m1, m2, m3, ..., mN} be a set of mapping
combinations for the current dataset and T = {t1, t2, t3, ..., tn} a set of tag collections.
Each mapping combination mi is represented as a vector in a n-dimensional vector
space, i.e., mi = w1,i, w1,i, w3,i, ..., wn,i, where wk,i denotes the weight for the tag tk in a
mapping combination mi, i.e.:

wk,i = tf � idftk,mi = tftk,mi ⇥ idft = tftk,mi ⇥

loge

✓
N

dft + 1

◆
+ 1

�
(11)

, where the former factor of the product is an occurrence frequency of the tag tk within
a mapping combination mi, and the later indicates the distribution of the tag among
all considered mapping combinations from both profiles (i.e., so that particular and
commonly occurring tags can be discriminated from each other). With this weighting
scheme, it is now possible to estimate how similar are the contents of the individual
mapping combinations, and more importantly, how similar are the profiles. We use the
weighting information in vectors to estimate this similarity. For the comparison, we
apply the cosine similarity measure [Lops et al. 2011], defined as follows:

sim(mi,mj) =

P
k wk,iwk,jpP

k (wk,i)2
pP

k (wk,j)2
(12)

The result of this measure is a cosine value of the angle between two vectors, in our
case between two mapping combinations. To identify which of the mapping combina-
tions from the item profile are relevant for the active user’s profile, we compare their
containing vectors with each other using the equation above. The retrieved values are
then used as scores to rank the relevant mapping combinations.

Returning to the example about top-ranked movies filmed in certain period of time.
When now including the shooting location (country) and the population of each coun-
try into the results, the mapping algorithm would produce a total of 55 visualizations
for 4 types of visualizations for the active user– incl. geo chart. Subsequently, VizRec
generates the user profile by extracting relevant tags (meta-data elements) from the
individual visualizations – an excerpt of this profile is shown in the left column of
Table III. The summarized terms represent here the actual content in each particu-
lar visualization – for instance, genre, movie and gross dimensions of the dataset are
displayed in the bar chart (the second row). Note that this profile information can be
augmented by additional tags, for example, when user is annotating visualizations7.
An excerpt of the item profile generated from aggregated user tags is shown in bot-
tom part of Table III. The TF-IDF vectors are shown next to the tags in Table III. For
example, the tag genre in the first mapping combination from the table has a TF-IDF
weight of 1.606. The term occurs only once in this mapping, i.e., tfgenre,mapping38 = 1,
and in 59 other mappings out of 110 overall mappings in repository, i.e., dfgenre = 59

7find further information about annotating visualizations in Section 4.
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User profile
ID Tags (frequency) TF-IDF Vector (weight)
.. ... ...

38

genre(1), movie(1), gross(1), barchart(1) genr:(1.606), movi:(1.306), gross:(1.916), barchart:(2.204)

.. ... ...

46

genre(1), year(1), gross(1), barchart(1) genr:(1.606), year:(1.542), gross:(1.916), barchart:(2.204),

47

genre(1), year(1), budget(1), barchart(1) genr:(1.606), year:(1.542), udget:(2.090), barchart:(2.204)

.. ... ...
Item profile

ID Tags (frequency) TF-IDF Vector (weight)
.. ... ...

23

movie(6), genre(7), budget(9), film(2), mul-
ti(1), line(1), chart(3), progressive(1), bud-
gets(4), gross(1), sales(1), years(2), produc-
tion(1), costs(1), films(1), action(1), sci-fi(1),
decade(1), genres(3), movies(3), year(2),
timeline(1)

movi:(3.918), genr:(5.079), budget:(7.534), film:(3.030),
multi:(3.398), line:(4.091), chart:(3.205), progress:(4.602),
gross:(1.916), sale:(3.398), year:(3.083), product:(2.705),
cost:(3.398), fi:(4.091), action:(3.621), sci:(4.091),
decad:(2.481), timelin:(2.117)

.. ... ...

25

movie(5), revenue(2), genre(12), gross(8),
collections(2), films(2), most(1), success-
ful(1), film(2), top(1), grosser(1), movies(5),
years(1), earnings(1), year(2), money(1),
decades(2), profit(1), box(1), office(1), profit-
s(1), decade(1), genres(2)

movi:(4.130), revenu:(3.974), genr:(5.791), gross:(5.420),
collect:(4.548), film:(3.498), most:(3.216), success:(4.602),
top:(3.061), grosser:(4.314), year:(2.670), earn:(2.928),
monei:(3.503), decad:(4.298), profit:(4.232), box:(2.810), off-
ic:(2.810)

.. ... ...

48

movie(4), genre(7), revenue(1), top(1), gross-
ing(1), cinemas(1), box(1), office(1), gross(9),
collections(1), cinema(1), numbers(1),
movies(4), categories(1), budget(1), prefer-
ence(1), earnings(1), popular(1), profit(1),
comedy(1), drama(1), genres(1)

movi:(3.694), genr:(4.543), revenu:(2.810), top:(3.061),
gross:(6.060), cinema:(6.101), box:(2.810), offic:(2.810),
collect:(3.216), number:(4.091), categori:(2.928), bud-
get:(2.090), prefer:(2.992), earn:(2.928), popular:(2.442),
profit:(2.992) comedi:(3.503), drama:(4.314)

.. ... ...

Table III: An excerpt of the movies dataset with generated user and item profiles.

and N = 110 respectively, so that tf � idfgenre,mapping38 = 1⇥ (loge(
110
59+1 ) + 1) = 1.606.

Note that here stemmed words are used instead of original ones (i.e., movie �! movi).
In the final step, scores are assigned to individual mapping combinations by com-

paring vectors of those mappings with vectors from the item profile using Equation 12.
Concretely in this example, the best matching could be found between mappings 46
(user profile) and 25 (item profile). In a nutshell, their cosine value would be estimated
as follows:

sim(

2

64

1.542
1.606
...

1.916

3

75 ,

2

64

4.314
2.928
...

2.810

3

75) =
1.542 · 4.314 + 1.606 · 2.928 + ...+ 1.916 · 2.810
p
1.5422 + ...+ 1.9162 ·

p
4.3142 + ...+ 2.8102

= 0.398

Hence the mapping combination 46 with the tags genre, movie, gross, and barchart
might be in this case one of the 10 preferred visualizations for the active user. Finally,
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Item rec1 score rec1 rank rec2 score rec2 rank hybrid score hybrid rank
Item1 0.3 2 0.7 1 0.5 1
Item2 0.5 1 0.3 3 0.4 2
Item3 0.2 3 0.5 2 0.35 3
Item4 0 0.1 4 0.05

Table IV: Recommendations for the weighted hybrid recommender.

based on the similarity values, each mapping combination mi is ranked following the
formula:

predcb(mi,mj) = ⌃mi,mj✏Msim(mi,mj) (13)

3.3.3. Hybrid Filtering. The two pieces of information used for recommendation sepa-
rately describe: what a visualization is about (CB-RS), and how good it is (CF-RS). A
combination of these pieces of information in a single recommendation strategy would
arguably supply more meaningful recommendations in varying situations (e.g., when
the user or item is new, when the user’s interest change). In general, there exists dif-
ferent methods for a hybrid design [Burke 2002; Dietmar et al. 2010] (see Section 2).

For the current investigation we have chosen a weighted hybridization design
as a first approach in VizRec to utilize the strength of both collaborative filtering
and content-based recommender techniques in the straightforward way. Concretely,
a weighted hybrid recommender defines the score of a recommended item from the re-
sults of all integrated recommender techniques by computing a weighted sum of their
scores. When linearly combining the scores, the collaborative and content-based rec-
ommender obtain equal weights. Thus, we use the uniform weighting scheme with
w1 = w2 = 0.5 for our hybrid recommender and define a new ranking for the recom-
mended items by combining their (normalized) scores from collaborative and content-
based recommender following the Equation 14.

predhyb(u, i) = ⌃n
j=1wjrecj(u, i) (14)

To clarify this process, we consider the table IV containing scores and rankings for
five exemplary items. According to this table, rec1 (CF-RS) produced for Item1 rank 2
and rec2 (CB-RS) the rank 1 considering the scores 0.3 and 0.7. When linearly combin-
ing those scores following the Equation 14, we obtain for the Item1:

predhyb(u, Item1) = 0.5⇥ 0.3 + 0.5⇥ 0.7 = 0.5 (15)

as the final score. Having computed the hybridized scores for the remaining items,
the Item1 will be finally ranked highest following the Item2 and Item3.

4. EVALUATION
In this section we investigate the performance of different recommendation strategies.
To do so, we design a study on a crowd-sourced platform to elicit preferences and tags
for a fix number of visualizations associated with three different datasets. This section
describes in detail, the data sources, the method and metrics used and the studies of
recommendation strategies.

4.1. Datasets and Mappings
The study used the following three open-source data sets:
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MovieLens8 data set (Movies): This data set comprises information about the
top-ranked movies for the years 1960, 1970, 1980, and 1990. It has 40 entries, which
are selected from items of the respective data set and are characterized by the
elements (movie) name, genre, budget, gross, creation year, shooting location (country)
and population of the country. Based on this, the mapping unit produced four types of
visualizations using the method described in Section 3.2 with the following mapping
frequencies: 32 bar charts, 9 line charts, 13 timelines and 1 geo-chart. Hence, a total
of 55 mapping combinations were generated.

EU Open Linked Data Portal9 data set (Eu): The Eu data set collects the per-
centage of the population looking for educational information online in the years
2009–2011 for 28 EU countries. It has 91 entries characterized by elements (country)
name, year, language, population, constitutional form and value (in percent) of the
population looking for educational information. The mapping unit suggested 30
possible mapping combinations, concretely 15 bar charts, 6 line charts, 8 timeline and
1 geo chart.

Book-Crossing data set10 (Books): This data set contained 41 randomly chosen
books published between 1960 and 2003 and characterized by the elements name,
country, publisher, and year. The mapping unit suggested 3 visualization types:
bar chart with 2 combinations, geo chart with 1 combination and timeline with 3
combinations, the total of 7 mapping combinations.

4.2. Procedure
Our experimental approach was to gather user preferences for visualizations obtained
from the rule-based system and to test different recommendation approaches to sug-
gest visualizations. A crowd-sourced study was designed to obtain personalized scores
for each visualization suggested by the visual recommender. Before giving a score, a
participant had to perform some cognitively demanding task with the visualization
(i.e., a minimal analysis). Based on the experiments conducted by Kittur et al. [Kit-
tur et al. 2008], this preparatory task should bring participants to accurately study
the chart and prevent a random or rash rating. We designed the task as follows: 1)
a participant was given a one line description of a data set originating the visualiza-
tion, 2) looking at the visualization she had to write tags (at most five) and 3) rate the
visualization, Fig. 6 shows an example of a HIT. The score system used a multidimen-
sional scale adapted from a list of usability factors presented in [Seffah et al. 2006]
and [Zheng et al. 2007]. Providing multidimensional rating scale should assist user in
considering various aspects of a visualization and thus to specify the subjective ratings
for the considered visualization. The rating scale contained the following factors: (1)
cluttered, (2) organized, (3) confusing, (4) easy to understand, (5) boring, (6) exciting,
(7) useful, (8) effective and (9) satisfying. Note that dimensions 1–6 are duplicated with
opposing sentiment (e.g., cluttered vs. organized). Opposing dimensions were used to
ensure meaningful ratings for scales with complex meaning. Dimensions were rated
on a 7-point Likert scale (1=not applicable – 7=very applicable).

Since the visualization scores were intended for the offline experiment, each partic-
ipant had to rate more than one visualization. We experimented with varying sizes of
HITs (Human Intelligent Task), collecting ten (10) and five (5) tasks. After a pilot study
these turned out to take overly long (around 15mins), sof we settled for three (3) charts

8https://movielens.org/
9https://open-data.europa.eu/en/linked-data
10http://www2.informatik.uni-freiburg.de/ cziegler/BX/
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Fig. 6: Crowd-sourced Experiment Task (HIT). Participants were motivated to care-
fully observe the visualization with the study task, in terms of writing tags for this
visualization. Thereafter, they had to rate it in a multidimensional scale.

per HIT. Suggested combinations were distributed in 32 HITs, each of which contained
3 randomly chosen mapping combinations. Pilot studies also helped to streamline da-
ta set descriptions, task descriptions and instructions across the study. After accepting
a HIT, the participant (worker or turker) received a tour to complete a task, which
showed a visualization and corresponding tags and ratings in the exact same format
as the subsequent study. When ready, the worker started the first task in the HIT by
pressing a button. Workers were allowed to write not applicable or NA for tags but
were alerted if they failed to write any tags. The rating dimensions were not assigned
a score until the worker did it. Workers could only proceed if they had rated all dimen-
sions. A HIT with three visualizations/combinations was compensated with $1.00. A
worker rated a minimum of three visualization, but to ensure a more realistic training
set for the CF-RS, workers were allowed to perform more than one HIT. Only expert
workers who consistently achieved a high degree of accuracy by completing HITs were
allowed to take part in the study.

4.3. Evaluation Protocol
A set of studies was carried out to analyze the variability in preference scores. To
compute the overall score for a visualization for each worker, the scores in opposing
dimensions (clutter, confusing, boring) were inverted and then all dimensions were

ACM Transactions on Interactive Intelligent Systems, Vol. V, No. N, Article A, Pub. date: January 2016.



VizRec: Recommending Personalized Visualizations A:25

averaged together according to the following equation: SC =
⇣Pk

i=1 ⇢kDk

⌘
/k. Where

k = 9 is the number of dimensions, ⇢k is the coefficient 1 and Dk is k dimension score.
The visualization score was obtained by averaging the worker scores.

In the second part of our evaluation, we performed an offline experiment to estimate
the quality of personal preferences for visualization recommendations. To this end, we
used the preferences collected from the Amazon study as input data to train our rec-
ommender. For the CF-RS, we maintain a list of items (visualizations), each having the
information about user and provided rating. Similarly, CB-RS uses the tags per item.
Finally, for the hybrid approach we combine the results of both recommender tech-
niques. Following the method described in [Trattner et al. 2015], we split the prefer-
ence model into the two distinct sets, one for training the recommender (training-set),
and another one for testing (test-set). The test-set acts here as a reference value that,
in an ideal case, has to be fully predicted for the given training-set. From each of the
datasets in the preference model, we randomly selected a certain percent (more details
are given in Section 5.3) of user-rated or user-tagged mapping combinations (visual-
izations) and entered them into the training-set performing 5-fold cross validation.
The recommendations produced out of the training-set are further used to evaluate
the performance of VizRec. The performance of VizRec depends generally on how good
it predicts the test-set. We compared the generated recommendations (prediction-set)
and the test-set by applying a variety of well-known evaluation metrics in informa-
tion retrieval [Herlocker et al. 2004]: Recall (R), Precision (P ), F-Measure (F ), Mean
Average Precision (MAP ) and the Normalized Discounted Cumulative Gain (nDCG).
The first three metrics basically express the quantity of relevant recommended results,
whereas MAP and nDCG quantify the concrete ordering of the results (i.e., penalizing
results which are not on the top but are relevant for the user). Concretely, the metrics
are defined as follows:

Recall (R@k) is calculated as the number of correctly recommended visualizations
divided by the number of relevant visualizations, where r

k
u denotes the top k recom-

mended visualizations and Ru the list of relevant visualizations of a user u in the set
of all users U . Recall is given by [Rijsbergen 1974]:

R@k =
1

|U |
X

u2U

(
|rku \Ru|

|Ru|
) (16)

Precision (P@k) is calculated as the number of correctly recommended visualizations
divided by the number of recommended visualizations k. Precision is defined as [Rijs-
bergen 1974]:

P@k =
1

|U |
X

u2U

(
|rku \Ru|

k

) (17)

F1-score (F1) combines precision and recall into one score [Rijsbergen 1974]:

F1@k = 2 · P@k ·R@k

P@k +R@k

(18)

Mean average precision (MAP) is an extension of the precision metric that addi-
tionally looks at the ranking of recommended visualizations. MAP is described in the
subsequent equation, where Bj is 1 if the recommended visualization at position j is
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Movies EU Books
#visualizations 55 30 7
#users 36 19 15
#ratings 4.950 2.700 630
#tags 1.835 976 226
#unique tags 520 243 118
Avg. #tags per visualization 33.36 32.53 32.28
Avg. #unique tags per visualization 22.45 20.30 23.85
Avg. #tags per user per visualization 3.23 3.24 3.23
Avg. #unique tags per user per visualization 2.18 1.74 2.61
Avg. #tags per user 50.97 39.04 15.06
Avg. #unique tags per user 22.44 17.24 11.13
Avg. #users per visualization 10.00 10.00 10.00
Avg. #visualisations rated/tagged 15.27 12.00 4.66

Table V: Basic statistics of the the three rating and tag datasets collected via the
crowd-sourced experiment.

among the relevant visualizations and 0 otherwise [Rawashdeh et al. 2013]:

MAP@k =
1

|U |
X

u2U

1

k

kX

j=1

Bj · P@j (19)

Normalized Discounted Cumulative Gain (nDCG@k) is a ranking-dependent metric
that not only measures how many visualizations can be correctly predicted but also
takes the position of the visualizations in the recommended list with length k into
account. The nDCG metric is based on the Discounted Cummulative Gain (DCG@k)
which is given by [Parra and Sahebi 2013]:

DCG@k =

|rku|X

k=1

(
2B(k) � 1

log2(1 + k)
) (20)

where B(k) is a function that returns 1 if the recommended product at position i in the
recommended list is relevant. nDCG@k is calculated as DCG@k divided by the ideal
DCG value iDCG@k which is the highest possible DCG value that can be achieved
if all the relevant visualizations would be recommended in the correct order. Taken
together, it is given by the following equation [Parra and Sahebi 2013]:

nDCG@k =
1

|U |
X

u2U

(
DCG@k

iDCG@k

) (21)

5. RESULTS
5.1. Participants
Each HIT was completed by ten workers. For 92 visualizations, 8280 ratings across 9
dimensions and 3068 tags were collected from 70 participants. Participants completed
on average 4.7 HITs. The experiment started on November 26, 2014 and ended on
December 3, 2014. The allotted working time per HIT was 900 sec and the average
working time of workers was 570 sec per HIT. Table V summarizes the details about
the study. As an example the Figure 7 presents the three (in average) highest rated
visualizations in each dataset whereby the Figure 8 the three (in average) lowest rated
visualizations in each dataset. Finally, Table VI lists the top-10 tags in each of the three
datasets.

ACM Transactions on Interactive Intelligent Systems, Vol. V, No. N, Article A, Pub. date: January 2016.



VizRec: Recommending Personalized Visualizations A:27

Rank tag #tags #visuals #users
Movies

1 movies 216 55 20
2 genre 103 30 15
3 budget 86 18 17
4 population 86 18 18
5 gross 57 18 10
6 countries 54 18 13
7 year 46 29 7
8 country 39 16 9
9 years 37 24 7
10 genres 34 24 8

EU
1 population 115 25 18
2 republic 65 15 17
3 countries 57 20 16
4 education 46 15 10
5 constitutional monarchy 44 15 12
6 year 30 16 11
7 language 29 8 9
8 constitutional form 27 11 8
9 government 24 12 7
10 monarchy 24 13 8

Books
1 books 32 7 9
2 publishers 14 5 10
3 publisher 13 4 9
4 countries 7 3 5
5 book publishers 6 4 3
6 count 6 2 4
7 year 6 4 4
8 book titles 4 3 4
9 timeline 4 4 1
10 book information 4 4 1

Table VI: Top-10 tags in each of the three datasets.

5.2. Visual Quality
The heatmap in Fig. 9 shows the mean rating for every dimension for each visualiza-
tion. The results confirm a clear understanding of the opposing dimensions. Negative
dimensions in the lower case received opposite scores to corresponding positive ones
(UN-co, OR-cl, EX-bo, in Fig. 9 top). The aggregated score for each visualization in the
bottom row of the heat map (SC) shows that only a handful of visualizations achieved
clearly high scores, whereas for each type there were high scoring visualizations. More
importantly, the violin plot at the bottom explains these scores: there is a broad vari-
ability in scores for most visualization instances. The violin plot shows the density of
scores; variability is visible in the different shapes as in the spread of the shapes. The
coefficient of variation computed for each chart confirmed this assumption (M = .36,
SD = .12) the minimum variation was .07 and the maximum was .64, see Fig. 10.
A Levene test on scores confirmed significant differences in variances accross charts
(F = 1.64, p < .001). This supports our assumption that user preferences matter when
choosing the right representation. The results confirm that only a very small number
of visualizations achieved high scores and the rest were variable.

From the heatmap individual top-scoring visualizations can be identified. To es-
tablish differences in the visualization categories and data sets, we performed a
factorial ANOVA with the visualization type and data set as factors (visualization-
type: bar, line, time, geo and data set: Movies, Books, Eu). Homogeneity of variance
was confirmed by a Levene test. The factorial ANOVA revealed a significant effec-
t of data set F (2, 908) = 21.19, p < 0.0001, a significant effect of visualization type
F (3, 908) = 38.98, p < 0.001 and significant interaction effect data set visualization

ACM Transactions on Interactive Intelligent Systems, Vol. V, No. N, Article A, Pub. date: January 2016.



A:28 Mutlu, Veas, Trattner

Movies EU Books

Avg. rating: 5.934
Mf. tags: Budget, Genre, Movie, Categories, Film production 

Avg. rating: 5.517
Mf. tags: Gross  income,  Movie titles, Box office, Popular 
movies, Name of movies

Avg. rating: 5.5
Mf. tags: Genre,  Gross, Profit, Revenues, Popular movies

Avg. rating: 5.709
Mf. tags: Language, Monarchy, Republic,  Constitutional 
form, Government 

Avg. rating:: 5.157
Mf. tags: Government type, Constitutional form vs. Republic 
form, Decades, Value by year, Education

Avg. rating:  4.325
Mf. tags: Countries, Year, Value,  Educational assessment,  
EU

Avg. rating: 4.368
Mf. tags:   Country of origin ,  Novel ,   Release year,  Book 
information, Publication date

Avg. rating:4.224
Mf. tags: Books, Years, Titles, Publisher, Literature

Avg. rating:: 3.6
Mf. tags: Books, Book publisher, Favorite books, Common 
publishers, Count

Fig. 7: Three (in average) highest rated visualizations for the datasets Movies, EU and
Books including the five most frequently used tags.

type F (5, 908) = 3.81, p < 0.01. TukeyHSD multiple comparisons revealed a significant
difference in scores between Movies (M = 4.86) and Books (M = 3.82) p < 0.05, as
well as between Movies and Eu data (M = 3.68), p < 0.001. For the visualization type,
there was a significant difference in scores between bar (M = 4.60) and geo (M = 3.06)
p < 0.001, bar and line (M = 3.29) p < 0.001, bar and time (M = 3.72) p < 0.001, as well
as between time and line, p < 0.02. The significant effects of multiple comparisons for
interaction are shown in Fig. 11.

The main outcomes are the information about user preferences and the clear differ-
ences among them. The interaction effects illustrate several differences amongst vi-
sualization type. For instance, the majority of the users preferred bar chart, probably
since it is familiar to most people. Another reason may be that it is easier to compare
the values of several numbers at once using bar chart. Yet these results merely in-
dicate that there are varied preferences. Looking at each data set, visualization and
visualization type in the heatmap of Fig 9, it is clear that while a small number of
visualizations are generally preferred, in most cases the ratings vary widely and a
personalized approach would accommodate those user preferences better.

5.3. Recommendation Quality
In this section, we summarize the results of the offline evaluation. As defined in the
protocol, first, we show how VizRec performs with regard to user preferences collected
in Amazon Turk experiment. We analyse here how the recommender performs using
individual rating dimensions compared to the performance with the aggregated rat-
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Movies EU Books

Avg.rating: 2.308
Mf. tags:  Movies, Profit, Box office, Genre, Gross  

Avg.rating: 2.474
Mf. tags:  Highest budget,  Films, Film budgets by decade, 
Film budgets by genres,  Film budgets   

Avg.rating: 2.675
Mf. tags:: Budget bar chart, Movie budget, Decades, 
Timeline, Years  

Avg.rating: 1.509
Mf. tags:  Country populations ,  National populations ,  
Population statistics, Population, Years 

Avg.rating: 1.593
Mf. tags:: Constitutional monarchy,  Republic ,  Population, 
Years, EU government  

Avg.rating: 1.776
Mf. tags::  Population percent,  Language,  Year, Yearly 
eduction statistics, EU  

Avg.rating: 2.491
Mf. tags: Publication country, World, Countries, Map, Nord 
America

Avg.rating: 2.533
Mf. tags: Publishers, Books, Books sales, Publisher groups,  
Publishers

Avg.rating: 3.416
Mf. tags:: Books, Publishers,  Year, Books by year, Decades 

Fig. 8: Three (in average) lowest rated visualizations for the datasets Movies, EU and
Books including the five most frequently used tags.

ings (overall score). Second, we show what kind of user feedback, rating values or
annotations via tags, would be more adequate for recommending visualizations. In ad-
dition, we compare the performance of collaborative filtering based recommender and
content-based recommender techniques with their hybridized version (hybrid recom-
mender).

5.3.1. Using Each Rating Dimension Separately. This part of the experiment was intended
to compare VizRec’s recommender performance when using a single rating vs. using
a multidimensional scale. To do so we estimated the quality metric values Recall (R),
Precision (P ), F-Measure (F ), Mean Average Precision (MAP ) and the Normalized
Discounted Cumulative Gain (nDCG), for each of the individual ratings and for the
overall score. Table VII summarizes the results.

The results show that recommendations generated with O.a (overall score) are more
accurate than those obtained with either of the nine dimensions separately. For in-
stance, when comparing by dataset Movies the recommendation accuracy (F@3) for
dimension UN with the value for the overall score, the dependent t � test reveal-
s that VizRec’s CF performs, on average, significantly better for the overall rating
(M = .1137, SE = .0077) than for the dimension UN (M = .0632, SE = .0036),
t(35) = 2.5204, p > .01, r = .400. Subsequently, MAP@3 ascertains that when using
the overall rating (M = .1011, SE = .0063) VizRec can sort individual recommenda-
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Fig. 9: Mean and variability in scores (rating 1–7, higher is better). The heatmap il-
lustrates the contribution of 9 dimensions (US=useful, SA=satisfying, EF=efficient,
UN=Easy to understand, co=confusing, OR=organized, cl=cluttered, EX=exciting,
bo=boring) to the overall score (SC). The violin plot below illustrates the high vari-
ability in personal ratings.

Fig. 10: Coefficient of variation. Overall variation for all charts (top), variation broken
down by charttype (middle), and by data set (bottom). Note that coefficient of varia-
tion is the ratio of SD/Mean. The density in the violin chart shows where the broad
variation of scores across charts.

tions according to their relevance to the user significantly better than e.g, using the
dimension UN (M = .0345, SE = .0038), t(35) = 2.6759, p > .01, r = .41. Note, the effect
size estimate (r) indicates that the difference in performance is a large, and therefore a
substantive, effect (just below .5) – all effects are reported at a .05 level of significance.

The results support our assumption that considering different aspects to rate visu-
alizations improves recommendation quality. This has a root in the fact that individual
dimensions are potential source of errors, as user may understand and interpret them
in different ways. In addition, when providing rating values, there is often a need for
a reference value, based on which such absolute ratings can be made (e.g., when just
taking the subjective judgment on ”useful” for the first time). On the contrary, different
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Fig. 11: Significant Interactions Visualization Type / data set. The heat-map illustrates
the mean score and standard deviation for each combination of data set-visualization
type (1=completely disagree, 7=totally agree). The lines below show where differences
begin to be significant. Note that due to its high variability, books-bar is not signifi-
cantly better than eu-line, whereas movies-line is.

aspects may provide such a reference value, as user get insight on what else may be
required that eventually stays in relation with other dimensions (e.g., easy to under-
stand and confusing). Furthermore, it is more likely that additional dimensions will
compensate for mistakes on individual dimensions, like being unable to evaluate it
objectively.

Another finding here is that there is no pattern across the nine dimensions implying
a dependence of the recommendation accuracy on negative (boring, cluttered, etc.,) or
on positive (effective, exciting, etc.,) dimensions. For instance, for the Movies dataset
the F � Measure for the positive dimension easy to understand is F@3UN = .0632
whereby for its opposite dimension confusing F@3co = .0891. A dependent t � test re-
veals that the recommendation accuracy for confusing (¬co) (M = .0891, SE = .0067) is,
on average, not significantly higher than for easy to understand (UN) (M = .0632, SE =
.0036), t(35) = 1.4146, p > .01, r = .2325. The effect size estimate indicates that
the difference in recommendation accuracy given by negative dimensions ¬co is a
small, and therefore unsubstantial effect. The same effect is present for the posi-
tive dimension exciting (M = .1003, SE = .0130) and its opposite dimension boring
(M = .0854, SE = .0079) t(35) = 0.7042, p > .01, r = .1181. These results indicate that no
dimension dominates the others and thus has a special impact on the overall rating. In
summary, negative ratings are as valuable input as the positive ratings [Schafer et al.
1999] but as many recommender systems, VizRec performs better using both positive
and negative ratings.

5.3.2. Using Overall Scores. To measure the improvements in terms of recommender
quality (= accuracy), we compared the VizRec CF with the baseline filtering algorithm-
s Most Popular (MP) and Random (RD). The RD simulates the recommender behavior
providing an arbitrary order of visualizations – i.e., it can be compared with having on-
ly the first two units in the VizRec pipeline from Fig. 1. The MP, in contrast, generates
the results sorted according to global ratings, in our case accumulated from ratings of
individual users. Considering RD and MP, baseline algorithms should unveil whether
the recommender systems can in general help with providing useful visualizations and
whether the personalized approach improves the quality of the results, respectively.

Table VIII summarizes the results of the evaluation.VizRec CF outperforms both
baseline algorithms in all three data sets. The first three quality metrics clearly in-
dicate that the results are more accurate using VizRec CF than simply generating
arbitrary visualizations (cf., F@3(CF ) = .1137 and F@3(RD) = .0055 for Movies). Con-
cretely, the dependent t � test reveals that, on average, the performance of the CF
(M = .1137, SE = .0077) is significantly higher that of the baseline algorithm RD
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Metric
Dataset Dimensions R@3 P@3 F@3 MAP@3 nDCG@3

¬bo .0814 .1425 .0854 .0598 .0924
¬cl .0551 .1389 .0757 .0419 .0761
¬co .0868 .1481 .0891 .0548 .0920
EF .0905 .1629 .0972 .0638 .1027

Movies EX .0993 .1592 .1003 .0687 .1071
OR .0692 .1463 .0866 .0584 .0872
SA .0834 .1481 .0895 .0696 .1022
UN .0470 .1185 .0632 .0345 .0642
US .0983 .1537 .0970 .0620 .1028
O.a .1320 .1685 .1137 .1011 .1362
¬bo .2080 .3473 .1286 .1800 .2488
¬bl .2592 .3649 .2754 .2061 .2833
¬co .2259 .3789 .2745 .1785 .2540
EF .2471 .3754 .2783 .2005 .2768

EU EX .2203 .3684 .2687 .1814 .2555
OR .2107 .3614 .2588 .1764 .2511
SA .1884 .3403 .2392 .1691 .2348
UN .2080 .3614 .2589 .1859 .2551
US .2270 .3649 .2640 .1945 .2615
O.a .2701 .3684 .2801 .2199 .2954
¬bo .5888 .4259 .4677 .4629 .4949
¬cl .6666 .5155 .5573 .5711 .5980
¬co .6066 .4888 .5182 .5333 .5513
EF .5222 .3518 .3955 .3833 .4186

Books EX .5466 .4906 .4955 .1814 .5110
OR .6133 .4488 .4920 .4544 .4944
SA .5466 .3822 .4266 .4377 .4675
UN .6400 .4844 .5266 .5522 .5753
US .5444 .4074 .4422 .4592 .4812
O.a .6933 .4400 .5626 .5966 .6220

Table VII: Quality metrics values estimated for the three example data sets using
VizRec’s CF-RS. The values are calculated first for the ratings taken from one out of
the nine dimensions (bo=boring, cl=cluttered, co=confusing, EF=efficient, EX=exciting
OR=organized, SA=satisfying, UN=Easy to understand, US=useful,) and than for the
overall rating score (O.a). Note, we inverted the ratings of the negative dimensions (N)
boring, cluttered and confusing using their opposites (P) exciting, organized and easy
to understand according to the equation (P�N)+7

2 . For this test we used a 5-fold cross
validation whereby each iteration used 80% of user’s data as training set and 20% as
test set.

(M = .0055, SE = .0149), t(35) = 3.0375, p < 0.01, r = .4567. The effect size estimate (r)
indicates that the difference in performance is a large, and therefore a substantive, ef-
fect. Additionally, MAP@3 and nDCG@3 reveal that VizRec CF is significantly better at
sorting individual visualizations according to their relevance to the user. For example,
the results for MAP@3 show that CF (M = .1011, SE = .0063) significantly outperforms
RD (M = .0020, SE = .0053), t(35) = 3.9771, p < .01, r = .0558. The effect size estimate
indicates also a large difference in performance and therefore a substantive effect – all
effects are reported at a .05 level of significance.

Note that the difference between individual metrics among the data sets is to a
large extent influenced by the considerable difference in size of the three data sets
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Metric
Dataset Alg. R@3 P@3 F@3 MAP@3 nDCG@3

CF .1320 .1685 .1137 .1011 .1362
Movies MP .0488 .0926 .0591 .0163 .0419

RD .0039 .0093 .0055 .0020 .0048
CF .2701 .3684 .2801 .2199 .2954

EU MP .0263 .0175 .0211 .0088 .0161
RD .0132 .0175 .0150 .0044 .0103
CF .6933 .4400 .5626 .5966 .6220

Books MP .1333 .0444 .0667 .0444 .0667
RD .0667 .0222 .0333 .0333 .0420

Table VIII: Quality metrics values R@3, P@3, F@3, MAP@3, nDCG@3 estimated for
the three datasets using the baseline algorithms MP and RD (k = 3). Note, for this test
we executed a 5-fold cross validation whereby each iteration used 80% of user’s data
as training set and 20% as test set.

(e.g., Books has only 7 different visualizations – F@3(CF ) = .5626, whereas Movies
has 55 – F@3(CF ) = .1137, see Fig. 9).

Another interesting finding is that the recommender strategy based on global rat-
ings (MP) generated less accurate results than VizRec CF, both with regard to provid-
ing relevant visualizations and their ranking order. This supports our main assump-
tion that in terms of the wide variability in user preference ratings, the personalized
approach performs better recommendations.

5.3.3. Collaborative Filtering vs. Content-Based Recommendations. For the sake of compar-
ing both VizRec recommenders, we extended the comparison using the same quality
metrics to rating-based (CF) and tag-based (CB) recommender techniques. The esti-
mation was performed in five runs using random splitting of training/test data, as
described in the procedure of the experiment. Each iteration uses 80%, 60%, 40% and
20% of user’s data as training and the rest as test set. Table IX summarizes the re-
sults Figure 12 illustrates them. The first observation reveals that both approaches
show relatively comparable performance in all three datasets, particularly for small-
er training data (i.e., cases with 20% and 40% of the users’ data). For the majority
of the quality measures in these two cases the CB outperforms the rating-based (CF)
recommender technique, both in providing expected recommendations and in sorting.
However, in few exceptional cases, mostly for 40% of the users’ data, CF shows slightly
better results (cf. Figure 12 (b), (d), (e) and (f)).

The results also reveal that the relative improvement in recommendation perfor-
mance depends to some extent on characteristics of the dataset. For example, for Books
the F-score measure for CB is about 5 times better than CF, while for Movies and
EU datasets the relative improvement in performance lies at about 8% and 9% re-
spectively. Concretely, when considering the recommendation quality (F@3) for the
dataset Movies with 20% of users’ data, the dependent t � test reveals that, CB (M =
.0399, SE = .0018) does not perform significantly better that CF (M = .0368, SE =
.0069), t(35) = .5879, p > .01, r = .0988. For the dataset EU the test reveals similar
results – CB (M = .1294, SE = .0082) does not perform significantly better that CF
(M = .1188, SE = .0061), t(18) = .5800, p > .01, r = .1354. On the other hand for the the
dataset Books we can observe that the performance of CB (M = .1622, SE = .0091) is
significantly better than CF (M = .0253, SE = .0125), t(14) = 2.8789, p > .01, r = .5965.
The effect size estimate (r) indicates that the difference in performance is a large, and
therefore a substantive, effect.
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Metric
R@3 P@3 F@3 MAP@3 nDCG@3

Dataset Alg. ts20 ts40 ts20 ts40 ts20 ts40 ts20 ts40 ts20 ts40

CB .0226 .0595 .2111 .1925 .0399 .0693 .0189 .0399 .0514 .0782
Movies CF .0207 .0289 .2018 .1944 .0368 .0482 .0175 .0241 .0467 .0571

Hybrid .0434 .1145 .3407 .4370 .0751 .1658 .0434 .1145 .0916 .1873
CB .0694 .0694 .4561 .3859 .1294 .1617 .0663 .0983 .1472 .1832

EU CF .0687 .1012 .4491 .4491 .1188 .1584 .0658 .0906 .1382 .1746
Hybrid .0821 .2043 .4842 .6842 .1372 .2961 .0714 .2043 .1550 .3113
CB .1226 .2371 .2400 .3066 .1622 .2730 .0822 .2093 .1462 .2750

Books CF .0177 .2093 .0533 .3600 .0253 .2633 .0177 .1768 .0252 .2536
Hybrid .1408 .2800 .4400 .5733 .2074 .3177 .1408 .2371 .2060 .3154

ts60 ts80 ts60 ts80 ts60 ts80 ts60 ts80 ts60 ts80

CB .0296 .0310 .1018 .0574 .0400 .0367 .0185 .0186 .0418 .0348
Movies CF .0401 .1320 .1684 .1685 .0600 .1137 .0305 .1011 .0641 .1362

Hybrid .1495 .3988 .4166 .3962 .1998 .3246 .1495 .3988 .2196 .4640
CB .0694 .0778 .2105 .1087 .1104 .0867 .0643 .0583 .1206 .0965

EU CF .1322 .2701 .4245 .3684 .1975 .2801 .1167 .2199 .2016 .2954
Hybrid .2903 .5303 .6982 .6561 .3901 .5444 .2903 .5303 .3979 .6073
CB .2800 .2800 .2400 .1644 .2568 .2160 .1788 .2144 .2612 .2690

Books CF .4822 .6933 .4488 .4400 .4551 .5626 .4477 .5966 .4623 .6220
Hybrid .6088 .8600 .5511 .5155 .5742 .5680 .5811 .8600 .6048 .8615

Table IX: Comparing VizRec Hybrid approach with rating-based and tag-based ap-
proaches: quality metric values considering the first three recommendations in the list
(k = 3). The results are distributed over four sets, each containing different number of
items (visualizations) in the training set ts. Note, for this test we used a 5-fold cross
validation.

Conversely, the last case of the experiment–with the 80% of the users’ data–,
the dependent t � test for Movies reveals that the recommendation quality (F@3)
with CF (M = .1137, SE = .0077) is, on average, significantly higher than with CB
(M = .0367, SE = .0033), t(35) = 3.1604, p < .01, r = .4711. The effect size estimate
(r) indicates that the difference in performance is a large, and therefore a substan-
tive, effect. For this training-set configuration, the user has more data (i.e., rated or
tagged items) and specific preferences are of more importance than in previous cas-
es with 20% and 40% of the training data. Since the CF looks at other user to find
recommendations, more specific results could be observed compared to CB.

In a nutshell, an important finding in this study was that both algorithms behave d-
ifferently in response to size of user preferences/profiles. With small user profiles/pref-
erences, the tag-based recommender performs better recommendation quality than the
rating-based filtering approach, especially for the larger datasets (e.g., Movies with 55
items), where the results remain stable for almost all quality metrics. With smaller
training sets, the tag-based filtering seems to be a method of choice.

5.3.4. Hybrid Recommendations. To evaluate the performance of our hybrid recom-
mender, we use the same quality metrics and compare the results with those previ-
ously estimated for CF and CB. Again, we run the recommender using a 5-fold cross
validation. The results are summarized in Table IX and illustrated in Figure 12.

Considering recommendation accuracy for all four training/test sets and all three
datasets, the hybrid recommender outperforms both CF and tag-based CB. For in-
stance, for Movies@t80, the dependent t � test between Hybrid and rating-based (CF)
recommender reveals, that, on average, the recommendation accuracy for Hybrid
(M = .3988, SE = .0202) is significantly higher than for CF (M = .1137, SE = .0077),
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(a) Movies R@3 (b) EU R@3 (c) Books R@3

(d) Movies P@3 (e) EU P@3 (f) Books P@3

(g) Movies F@3 (h) EU F@3 (i) Books F@3

(j) Movies MAP@3 (k) EU MAP@3 (l) Books MAP@3

(m) Movies nDCG@3 (n) EU nDCG@3 (o) Books nDCG@3

Fig. 12: Performance plots for rating-based, tag-based, and hybrid approaches consid-
ering the first three recommendations in the result list (k = 3).

t(35) = 6.6380, p < .01, r = .7465. The effect size estimate (r) indicates that the dif-
ference in performance is a large, and therefore a substantive, effect (r > .5). Fur-
thermore, the dependent t � test between Hybrid and tag-based (CB) recommender
for Movies@t80 delivers similar results. Concretely, the recommendation accuracy for
Hybrid (M = .3988, SE = .0202) is significantly higher than for CB (M = .0367, SE =
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.0033), t(35) = 9.6200, p < .01, r = .8518. The effect size estimate (r) also indicates a
large difference in performance, and therefore a substantive, effect (r > .5).

For the sake of evaluating the performance of Hybrid recommender for more than
one dataset, we consider now the recommendation accuracy for the dataset Eu@t80.
The dependent t � test between Hybrid and rating-based (CF) recommender reveals
that, on average, the recommendation accuracy for Hybrid (M = .5444, SE = .0151) is
significantly higher than for CF (M = .2801, SE = .0076), t(18) = 3.1960, p < .01, r =
.6016. The effect size estimate (r) for this test indicates that the difference in per-
formance is a large, and therefore a substantive, effect (r > .5). Furthermore, the
dependent t � test between Hybrid and tag-based (CB) recommender for Movies@t80

delivers similar results. Concretely, the recommendation accuracy for Hybrid (M =
.5444, SE = .0151) is significantly higher than for CB (M = .0867, SE = .0141),
t(18) = 8.1385, p < .01, r = .8867. Similar to the previous test, the effect size estimate
(r) indicates that the difference in performance is a large, and therefore a substantive,
effect (r > .5).

Subsequently, MAP@3 and nDCG@3 values @ts80 ascertain that the hybrid recom-
mender can sort individual recommendations according to their relevance to the user
better. Concretely, the dependent t � test for Movies@t80 between Hybrid and CF (on
nDCG@3 values) reveals that Hybrid (M = .4640, SE = .0333) recommender performs
significantly better than CF (M = .1362, SE = .0081), t(35) = 7.7978, p < .01, r = .7966.
Finally, the effect size estimate (r) indicates that the difference in performance is a
large, and therefore a substantive, effect (r > .5).

An interesting finding here is that the more data exist about the user the better the
hybrid recommender performs (cf., Movies@ts80: F@3Hybrid = .3246, nDCG@3Hybrid =
.4640, Movies@ts20:F@3Hybrid = .0751, nDCG@3Hybrid = .0916). As already shown in
the previous study this finding does hold for the CB. On the other side, CF recom-
mender behaves similar to the hybrid recommender but not in the same volume (cf.,
Movies@ts80: F@3Rate = .1137, F@3Hybrid = .3246).

In summary, our studies reveal that combining users’ tags and ratings improves the
quality of recommendations significantly. The ratings and tags are user specific, i.e.,
ratings present user’s general tastes and tags user’s topic of interest. When combining
both, a recommender system has more detailed information stored in user preferences
and can respond more accurately. Concretely, the system can consider larger diversity
of item types for defining the prediction, which in turn increases the likelihood that
user will be recommend items which match her preferences the best. When now con-
sidering our second evaluation goal – investigate what kind of feedback is more useful,
in terms of recommendation quality, we can finally say that ratings and tags together
help to build more accurate recommender system for personalized visualizations.

6. CONCLUSIONS
Creating and proposing just the relevant visualizations requires appropriate filtering
and recommendation strategies. Our investigations build on the premise that prefer-
ence of a visual representation for data is a personal matter. We set out to investigate
which information lets us anticipate the choice of chart, how to represent such informa-
tion and use it for recommendation. Through a crowd-based experiment we collected
empirical evidence supporting the assumption that preferences vary widely for visual
representations generated automatically. Beyond visual perception guidelines, there
are other reasons that lead people to choose a particular representation. It may be ha-
bituation, as a user may be comfortable with using a particular representation for data
analysis, though this has to be validated in future studies. Our research tries to unveil
which aspects have to be present to recommend relevant visualizations. We outlined
a rating scale comprising nine dimensions built upon established usability factors. S-
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cores for charts obtained in each of these dimensions were used to train a CF-RS and
compared to an aggregated score averaging all nine dimensions. The overall score per-
formed better recommendations than just using visualization guidelines and also than
the top-scoring, confirming our assumptions that personalization is important.

These metrics are only based on assessed quality of a chart. However, the choice of
representation is also tied to the task or question to be answered. To represent these
aspects, we used tags elicited through the crowd based experiment to train a CB-RS.
Comparing both CF and CB leads to the conclusion that tags are good descriptors
when there is little knowledge about user preferences. Yet, as tags contribute a great
deal of knowledge about the user, we combined both pieces of information in a hybrid
recommender approach. The studies revealed that the hybrid approach significantly
outperformed both CF and CB in most occasions.

A major contribution of our work is that it is based on the empirical evidence col-
lected via a methodical study involving the general public. Our approach to generating
and suggesting visualizations, the process of elicitation of users’ preferences and the
insights described in this paper are to the best of our knowledge, novel. The rule-based
recommender was developed for the web-based tool, VisWizard, to automatically sug-
gests appropriate visualizations for Linked open data.11 Furthermore, the Recommen-
dation dashboard12, a tool that organizes recommended items and helps their visual
analysis benefits from the mapping algorithm to generate appropriate visualizations
for the recommendations.

Our research did not concentrate on whether users are willing to provide informa-
tion (tags/ratings) for visualizations. This is a valid research question for future work.
Relevant works [Viegas et al. 2007; Wright et al. 2006] reveal the benefit of annotating
visualizations in context of information retrieval. When annotating the user provides
her insights and her interpretation on the data being visualized. Hence, they serve as
analysis finding records and personal reminder [Elias and Bezerianos 2012] for lat-
er data discovering and analysis tasks. In the current work, we simply used known
information such as the user query and the dataset fields as part of the tag vector
describing the user’s needs and visualization respectively, but clearly better interfaces
are needed to make sure that the needed information is there for the recommendation
strategy to work. In the future, we will investigate interfaces to elicit such information
with minimal effort making it part of the analysis process whenever possible.
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