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ABSTRACT

Although many social tagging systems share a common tri-
partite graph structure, the collaborative processes that are
generating these structures can differ significantly. For ex-
ample, while resources on Delicious are usually tagged by all
users who bookmark the web page cnn.com, photos on Flickr
are usually tagged just by a single user who uploads the
photo. In the literature, this distinction has been described
as a distinction between broad vs. narrow folksonomies.
This paper sets out to explore navigational differences be-
tween broad and narrow folksonomies in social hypertextual
systems. We study both kinds of folksonomies on a dataset
provided by Mendeley - a collaborative platform where users
can annotate and organize scientific articles with tags. Our
experiments suggest that broad folksonomies are more use-
ful for navigation, and that the collaborative processes that
are generating folksonomies matter qualitatively. Our find-
ings are relevant for system designers and engineers aiming
to improve the navigability of social tagging systems.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/ Hypermedia—Navigation; H.5.3 [Information In-

terfaces and Presentation]: [Group and Organization In-
terfaces—Collaborative computing]

General Terms

Experimentation, Measurement, Algorithms
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1. INTRODUCTION
In social tagging systems, users organize information us-

ing so-called tags – a set of freely chosen words or concepts
– to annotate various resources such as web pages on Deli-
cious, photos on Flickr, or scientific articles on BibSonomy.
In addition to using tagging systems for personal organiza-
tion of information, users can also socially share their an-
notations with each other. The information structure that
emerges through such processes has been typically described
as “folksonomies1” (folk-generated taxonomies). Usually,
such folksonomies are represented as tripartite graphs with
hyper edges. These structures contain three finite, disjoint
sets which are 1) a set of users u ∈ U , 2) a set of resources
r ∈ R and 3) a set of tags t ∈ T annotating resources
R. A folksonomy as a whole is defined as the annotations
F ⊆ U × T ×R (cf. [26]). A bookmark or post refers to a
single resource r and all corresponding tags t of a user u.
Although this tripartite structure of folksonomies can be

mapped onto a broad range of different systems in hetero-
geneous domains (such as Delicious, Flickr, Mendeley and
others), the collaborative processes that are generating these

structures can differ significantly. For example: While re-
sources on Delicious are usually tagged by a larger group of
users (e.g. by everybody who has bookmarked the web page
cnn.com), photos on Flickr are usually tagged just by a sin-
gle user (e.g. just by the user who has uploaded the photo).
In past discussions, this distinction has been described as a
distinction between broad vs. narrow folksonomies2.

Thus, while broad folksonomies are structures that have
been generated as a result of aggregating data from many

people tagging the same resource, narrow folksonomies are
structures that have been generated as a result of aggre-
gating data from single users tagging their own resources.
Although both kinds of folksonomies can be mapped onto

1http://www.vanderwal.net/folksonomy.html
2http://personalinfocloud.com/2005/02/explaining_
and_.html



the tripartite structure of folksonomies, it is reasonable to
expect that they differ with regard to their overall network
characteristics and topology, form and function. In this pa-
per we will argue that without thorough investigations of
the different characteristics of different kinds of folksonomies
(e.g. broad vs. narrow), our understanding of the poten-
tials and limitations of social tagging systems will be lim-
ited. Therefore, understanding the usefulness and utility
of different kinds of folksonomies for different tasks - such
as navigation, emergent semantics or information retrieval -
represents a problem of both theoretical and practical im-
portance.

Similar classifications of metadata have been analyzed in
other application areas such as learning objects metadata.
In their analysis in [29] the authors distinguish between “au-
thoritative” metadata that is provided by official data de-
scriptors, e.g. learning object authors and“non-authoritative”
metadata which emerges through the usage of learning ob-
jects in different contexts, e.g. it is created by a user com-
munity. In our terminology “authoritative” metadata corre-
sponds to narrow folksonomies and“non-authoritative”meta-
data to broad folksonomies. The authors argued in their
study that there are significant differences in the utility
of different types of metadata. For example, they demon-
strated that the “non-authoritative” metadata is crucial for
effective discovery and reuse of learning objects in different
contexts.

In this paper, we aim to systematically compare differ-
ences between broad and narrow folksonomies on a large
tagging system (Mendeley). Mendeley is a collaborative
platform for scientists where users can annotate and orga-
nize scientific articles with tags. Because Mendeley not only
captures data about the set of tags assigned by users, but
also about the set of keywords assigned by the authors of
articles (extracted from library and metadata information),
we can generate both broad and narrow folksonomies for the

same set of resources (i.e. scientific articles) at the same
time. This means that we can generate broad folksonomies
based on the tags users assigned to scientific articles, and
we can generate narrow folksonomies for the same set of re-
sources based on the keywords that authors assigned to their
papers.

In this work, we will compare the usefulness of broad vs.
narrow folksonomies for a given task : navigation. We start
by applying hierarchical clustering algorithms (such as the
algorithm by [2] and others) to create hierarchies of tags and
keywords as navigational structures between resources. We
then use an existing framework for simulating navigation in
social tagging systems [13] based on Kleinberg’s decentral-
ized search [17] to simulate a hypothetical user navigating
the resource space using information provided by keywords
vs. tags. In particular, we are going to model a navigational
task where the user starts at an arbitrary keyword/tag and
navigates to another keyword/tag to reach the list of arti-
cles with that keyword/tag. In our simulations, we adopt
a greedy routing strategy based on Kleinberg’s decentral-
ized search. As a result, we use keyword/tag hierarchies as
background knowledge that guides the simulation towards a
particular destination by providing information on distances
between keywords/tags in the resource network. To reflect
the limitations of a real-world user interface, we then re-
peat the simulations by introducing constraints related to
different user interface elements inspired by previous work

[12]. The overall outcome of our investigations allows us
to shed light on the differences between broad vs. narrow
folksonomies in theoretical but also in practical navigation
settings (by considering UI constraints). For our simulations
we use a dataset that currently includes about 150 million
scientific articles and has a community of about 1,5 million
of users who tag articles in an unconstrained manner.
Our results suggest that both broad (tag-based) and nar-

row (keyword-based) folksonomies support efficient naviga-
tion in theory. However, taking some practical limitations
of typical user interfaces into account, we find that broad
folksonomies outperform narrow folksonomies significantly
on our dataset.
In summary, this paper reports on the following findings

based on our dataset:

• Narrow folksonomies create less effective navigational struc-
tures than broad folksonomies when real-world user inter-
face constraints are considered.

• Our analysis suggests that navigational effectiveness of
tags comes from the different viewpoints of readers pro-
vided through tagging resources.

• Broad folksonomies provide substantially higher quality of
navigational structures than narrow ones. We speculate
that with growing numbers of tags in broad folksonomies,
their navigational advantage becomes even greater. More
research on this question is warranted though.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work. In Section 3 we shortly
present our simulation model for user navigation. In Sec-
tion 4, we outline our experimental setup and in Section 5
we present our experimental results. In Section 6 we dis-
cuss the results and provide a possible explanation for the
observed difference in navigational efficiency.

2. RELATED WORK

Related work in this field of research can be split up into
two different parts: folksonomies, and navigation and hier-

archies in networks.
Folksonomies: In the past, folksonomies have been stud-

ied from at least two different perspectives – from an onto-
logical and an information retrieval perspective. From the
ontological perspective, our community analyzed emergent
semantic structures. For example [2, 14, 24] propose algo-
rithms for constructing semantically sound tag hierarchies
from social tagging data. A detailed analysis of approaches
to semantic relatedness of tags in social tagging systems can
be found in e.g. [6]. In our own previous work [20, 21],
we investigated the extent to which tag semantics are influ-
enced by user motivation and usage practices. In [31] we
investigated the quality of semantic relations in automati-
cally constructed tag hierarchies. By measuring Taxonomic
Recall and Precision [9] against a huge number of existing
human created concept hierarchies we have shown that al-
gorithms such as e.g. [2] outperform other popular tag hi-
erarchy induction approaches such as Affinity Propagation
[11] or Hierarchical K-Means [10].
From the information retrieval perspective, Chi at al. [7]

investigated the ability of tags to efficiently encode resources
for later retrieval and found out that this ability decreases
over time. In [15] and [1] the authors proposed and evaluated
search ranking algorithms such as FolkRank and SocialSimi-
larity Rank. In our own previous work[13], we evaluated the



suitability of different tag hierarchies to support navigation
in social tagging systems on a theoretical level – not taking
user interface constraints into account. There we showed
that tag hierarchies created with algorithms such as [2, 14]
are able to, at least in theory, provide an efficient support
for navigation in tagging systems. In subsequent work, we
also modeled typical limitations of a standard user interface
such as e.g. directories, and were able to deduce a new al-
gorithm that produces tag hierarchies that are still able to
support efficient navigation even when restricted by a real-
world user interface [12]. These hierarchies were evaluated
by simulations with the same decentralized approach as it is
also used in this paper.

Navigation and hierarchies in networks: Research
on navigation in complex networks was initiated by the fa-
mous small-world experiment conducted by Milgram [27].
In that experiment randomly selected persons were required
to pass a letter to a target person through their social net-
works. The striking result of the experiment was that the
average chain length length was only six. Apart from the
findings that humans in that social network are connected
by short paths, another conclusion was that humans can
efficiently navigate social networks although they have only
local knowledge of that network – humans can efficiently per-
form decentralized search. Kleinberg concluded that humans
possess background knowledge of the network structure and
that this knowledge allows humans to efficiently find short
paths [16, 18, 19]. Kleinberg represented such background
knowledge as a hierarchy of nodes, where more similar nodes
are situated closer to each other in the hierarchy.

In [30] the authors extend the notion of background knowl-
edge to the notion of hidden metric spaces. In such hidden
metric spaces nodes are identified by their co-ordinates – dis-
tance between nodes is their geometric distance in a particu-
lar metric space. Navigation strategies in complex networks
are then based on the distances between nodes – an agent
always navigates to the node with the smallest distance to
a particular destination node. An interesting research ques-
tion is the structure of such hidden metric spaces that un-
derlie observable networks. In [4], the authors introduce a
model with the circle as a hidden metric space and show
its effects on routing in the global airport network. In [22]
the authors discuss hyperbolic geometry as a hidden met-
ric space (which can be approximated by a node hierarchy)
whereas in [5] the authors apply hyperbolic geometry as a
model of the hidden metric space of the Internet and design a
novel greedy Internet routing algorithm. In [23] the authors
describe a novel decentralized search model for efficient nav-
igation in social networks. The model is based on the users
interest. By simulating navigation on the co-author network
of DBLP3 they evaluate the model and show the importance
of one step lookahead in decentralized search algorithms for
social networks.

Hierarchies that are extracted from networks play an im-
portant role in many of these network navigation models.
Apart from the tag hierarchy induction algorithms based on
bipartite networks such as e.g. [14, 2, 12], researchers also
proposed hierarchy extraction algorithms for general net-
works. In [28] the authors discuss an algorithm for hier-
archy construction in Wikipedia networks based on met-
rics for estimating hierarchy level of single nodes. Also,

3http://dblp.uni-trier.de/

Clauset et al. [8] present a hierarchy induction algorithm
based on prediction of hierarchical links. Links prediction
problem (in general settings) has been also studied by Liben-
Nowell and Kleinberg [25]: They studied the extent to which
interactions among members of a social network are likely
to occur in the near future.
West and Leskovec [32] performed a study of user navi-

gation behavior. The authors analyzed a collection of click
paths of users playing a navigation game in a network of
links between the concepts of Wikipedia. In their work they
found out that user navigation behavior differs from short-
est paths. For example, users typically navigate through
high-degree hubs in the early phase and then apply content
similarity as a criteria for reaching the destination concept.

3. METHODOLOGY

Our methodology for comparing the usefulness of broad
vs. narrow folksonomies for navigation is simulation. We
simulate a user who visits a digital library in search for a
set of scientific articles and applies thereby a set of standard
information seeking strategies. A recent study that inves-
tigated user behavior in Web search [33] showed that not
many users satisfy their information need with their first
search query. Instead, users visit one of the first search re-
sults, follow links on that result page, backtrack, follow some
other links, then in many cases refine their search, and so
on.
Thus, we model a user who starts the inquiry by issuing a

search query either at an external search engine or using the
integrated search function provided by the digital library.
Upon selecting one of the search results the user lands at a
particular page in the digital library and explores the links
from that page in order to satisfy her information need. We
model this first step by randomly selecting words from broad
(tags) vs. narrow (keywords) folksonomies from the library.
We represent the user information need as another randomly
selected destination keyword together with the list of arti-
cles for which this destination keyword was assigned. We
then simulate the navigation from the starting keyword to
the destination keyword. In our previous work we simu-
lated the navigation in tagging systems by simulating a user
traversing links between tags from tag clouds [13] or links
in a hypothetical directory-like user interface for tags [12].
The former was an assessment of the navigability of tags
in an unconstrained settings whereas the latter represents
a more realistic settings of a user interface that has limita-
tions in the number of items that are presented to the user.
Please note that an important advantage of simulation as
an evaluation strategy is the possibility to experiment with
various configurations and parameters and in this way cover
a wide range of different settings – something that would
not be possible in more traditional user studies. Thus, we
apply the same methodology in this paper and evaluate dif-
ferent settings in which keywords might be used to support
navigation, such as unconstrained navigation, or different
variations of navigation limited by constraints of a typical
user interface.
In [12, 13] we introduced a simple user navigation model

– in this paper we just shortly explain its basic principles.
Essentially, user navigation in information networks (such
as networks of tags, or networks of keywords and scientific
articles) is a kind of so-called decentralized search, or search
with local knowledge of the network [16, 17, 18, 19]. At



each step of navigation towards a specific destination node
the user is aware only of links emanating from the current
node. The user does not possess the global knowledge of
the network and is therefore required to adopt a navigation
strategy that will guide her as fast as possible to the desti-
nation node. In his research on the search in social networks
inspired by the famous small-world experiment by Milgram
[27] Kleinberg introduced a simple greedy strategy [16, 17].
The prerequisite for this strategy is the existence of an ex-
ternal background knowledge on the network that defines
the notion of distance or similarity between network nodes.
An agent applying the greedy strategy selects from currently
available links the link that leads to the most similar, i.e. to
the node closest to the destination node. Kleinberg was able
to show that such a greedy strategy is a very efficient one
and that an agent applying that strategy always finds the
destination node in a small number of steps that is bounded
poly-logarithmically in the number of nodes.

Thus, we simulate user navigation by applying such a
greedy strategy in search from the start to the destination
node. In [12, 13] we represented the background knowledge
as various tag hierarchies. Clearly, the structure of this hi-
erarchy influences navigational capability. We assessed nav-
igational efficiency provided by those hierarchies by measur-
ing how often the search for the destination node is success-
ful and if successful how fast is it. We were able to show in
those papers that tag hierarchies can indeed support efficient
navigation. We also designed a new algorithm that induces
tag hierarchies that are efficiently navigable even under the
restrictions of a realistic user interface. In this paper we
apply those same algorithms on collections of keywords and
scientific articles, measure the navigability of keywords and
compare those results with the results that we obtained for
tags on the same set of resources.

Moreover, in this paper we extend our navigation model
to account for a situation where the user looks for a specific
scientific article. Thus, we are not only interested in how
quickly we can find keywords – we also want to know how
easy it is to find a particular article once when we reach one
of its keywords.

4. EXPERIMENTAL SETUP

4.1 Simulation and Evaluation Metrics

We divide our evaluation into two parts: We compare the
usefulness of broad vs. narrow folksonomies by comparing
their (i) encoding efficiency and (ii) navigational efficiency.

Encoding efficiency. First, we evaluate how good dif-
ferent folksonomical data is at encoding articles for later
retrieval. This evaluation provides an insight in the inter-
mediate exploration steps of the navigation process – the
user has already reached a potentially interesting keyword
or tag and the system presents a list of articles associated
with that keyword or tag. We want to estimate how easy
is it to find a specific article in this list. This is typically
measured in terms of conditional entropy [7]. Entropy is a
measure of uncertainty in a random variable. In informa-
tion theory entropy is expressed in the number of bits that
are needed to encode a random variable. Entropy reaches
the maximal value when the random variable is distributed
uniformly (uncertainty in the value of that random variable
is maximal) and is minimal, i.e. it is equal to zero if the ran-
dom variable always takes on a single value. Entropy of a

single random variable (e.g. tags or keywords) is calculated
by:

H(X) = −

∑

x∈X

p(x)log(p(x)) (1)

In turn, conditional entropy quantifies uncertainty in one
random variable (articles) once we know a specific value of
another random variable (keywords or tags). Thus, condi-
tional entropy of articles measures how difficult is to find
a specific article within the presented list. Higher values of
conditional entropy mean that there is more uncertainty and
it is therefore more difficult to reach a particular article. On
the contrary, lower values of conditional entropy mean that
the first random variable (keywords or tags) encodes articles
more efficiently, decrease uncertainty, and thus it is easier for
users to reach a specific article. Conditional entropy of two
random variables is given by:

H(Y |X) = −

∑

x∈X

p(x)
∑

y∈Y

p(y|x)log(p(y|x)) (2)

The navigability evaluation consists of four steps:

Network construction. We start with the datasets that
include triples of keywords or tags, articles, and authors
or users. From those datasets we construct bipartite net-
works of keywords (tags) and articles and remove the user
information as that information is typically not relevant for
navigation. Subsequently, we project the bipartite networks
onto keyword-to-keyword and tag-to-tag networks as those
networks are available for the user for navigation. We as-
sume that article lists are also presented to the user upon
selecting a keyword or a tag but only as a means of satisfy-
ing the initial information need, whereas keywords or tags
are used for exploration, i.e. as a means of making progress
towards the final destination.

Hierarchy construction. We induce broad (tag-based)
and narrow (keyword-based) folksonomy hierarchies which
we will use as the background knowledge to steer naviga-
tion. We use two algorithms for constructing hierarchies. In
[14], the authors introduce a generic algorithm for producing
hierarchies from bipartite networks such as tag-to-resource
networks. The algorithm can be applied to arbitrary bi-
partite structures. The algorithm takes as input two pa-
rameters. The first is a ranked list of tags sorted by their
centrality in the projected tag-to-tag network. This central-
ity ranking acts as a proxy to the generality ranking of tags.
Benz et al. [3] showed that the centrality provides a viable
approximation to the tag generalities. The second input pa-
rameter is the tag similarity matrix. The algorithm starts
then by a single node hierarchy with the most general tag
as the root node and then iterates through the centrality
list. At each iteration step, the algorithm adds the current
tag to the hierarchy as a child to its most similar tag. The
centrality and similarity measure are exchangeable – in [14]
the authors use closeness centrality and cosine similarity,
whereas in [2] the authors select degree centrality and co-
occurrence similarity measure. As both combinations per-
form similarly in supporting navigation [13], we select the
latter combination because of better computational proper-
ties. This algorithm produces unbalanced hierarchies that
are typically very broad in the top hierarchy levels. As some
of the top nodes in real datasets might end up with hundreds
or even thousands of children those hierarchies give us the



K T OK OT

Bipartite

Metadata 1,124,260 399,703 469,952 201,651

Links 28,459,841 12,869,137 3,323,787 1,492,217

Articles 5,172,180 3,649,350 523,488 523,488
#Links

#Metadata
25.3 32.3 140.8 134.72

Eff.Diam 6.92 7.10 8.25 8.65

Projected Dataset

Metadata 1,092,655 371,044 455,001 166,957

Links 124,690,988 47,760,792 26,450,686 7,877,564
#Links

#Metadata
114.18 128.7 58.13 47.5

Eff.Diam 4.06 3.94 4.79 4.68

Table 1: Dataset and network statistics of broad (T,
OT) vs. narrow (K, OK) folksonomies. Datasets OT
and OK only contain articles for which both tags and
keywords are available.

insight in the intrinsic, theoretical, and unconstrained nav-
igational support. We obtain a more realistic assessment
of navigational efficiency by applying a variant of this algo-
rithm. In [12], we extended that algorithm and introduced
an algorithm that takes also the branching factor (the max-
imal number of children) of the final hierarchy as an input
parameter. Through re-balancing of the hierarchy and in-
troduction of nested misc categories we were able to produce
hierarchies that support efficient navigation even under re-
alistic limitations imposed by a typical user interface.

Search pairs selection. We randomly select one million
of so-called search pairs consisting of a start node and a
destination node. Both start and destination nodes are low
degree nodes as searching for high degree nodes is a triv-
ial task. For those pairs we calculate the global shortest
path that we will use as our metric to assess the navigation
efficiency.

Navigation simulation. We run simulation with greedy
navigation on those search pairs and measure the success
rate s and stretch τ which is the ratio of the number of
simulator steps and the global shortest path. We calculate
the global averages of both metrics (sg and τg), as well as
distribution of both values over the global shortest path.
Also we calculate average of the global shortest path (l), as
well as average number of simulator hops (h), i.e. average
number of clicks of the simulated user.

4.2 Datasets
Mendeley4 claims to be the largest research database, with

150 million papers and 1,5 million users. For our experi-
ments, we used tagging data (dataset T) from the system
gathered in September 2011 as well as a snapshot from the
Mendeley system which includes papers as well as the cor-
responding keywords provided by the authors (dataset K).
For datasetT we lowercased the tags and removed typos and
personal bookmarks, i.e. tags that were used only once by a
single user. Lowercasing of the keywords was also performed
for dataset K. Furthermore we constructed an “overlapped”
dataset - a dataset which includes only articles for which
both keywords and tags are available. These datasets are
calledOT – overlapped tags andOK – overlapped keywords
respectively.

Projection of the Dataset: After this preprocessing
step, we construct the bipartite networks of keywords and

4http://www.mendeley.com

K T OK OT

Entropy 15.09 14.23 12.74 12.39

Cond. Entropy 6.40 5.92 4.18 3.81

Table 2: Entropy and Conditional Entropy for broad
(T, OT) vs. narrow (K, OK) folksonomies. Datasets
OT and OK only contain articles for which both tags
and keywords are available.

articles and tags and articles. From those bipartite networks
we extract the largest connected component (which typically
contains around 99% of the network nodes). Finally, we
project the largest connected component onto keyword-to-
keyword and tag-to-tag networks and obtain the final net-
works on which we perform our analysis. The dataset and
network statistics are shown in Table 1.
The first important property here to note is that the quan-

titative ratio of the number of links and the number of
metadata items (i.e. nodes) is comparable between the data
set. The second property – the effective diameter (which is
the longest shortest path that connects 90% of all network
nodes) – is also comparable in all datasets. Thus, this ba-
sic quantitative network-theoretic properties indicate that all
networks possess similar navigational properties. Hence, any
differences in navigational efficiency have to be accounted for
qualitative differences in the network topology.

5. RESULTS

5.1 Tag and Keyword Entropy
Table 2 shows the entropy of articles conditional on key-

words and tags in all four datasets. Although it is difficult
to interpret absolute values obtained for the conditional en-
tropy, a comparison of entropy values obtained for different
datasets provides insight in the relative encoding efficiencies
of broad vs. narrow folksonomies. From this analysis we can
observe that in our dataset, broad folksonomies (T, OT) en-
code articles more efficiently than narrow folksonomies (K,
OK). In other words, on average we know more about ar-
ticles annotated by a particular tag than about articles an-
notated by a particular keyword. This is important when
considering that users navigate for resources, not for tags.
Our simulation currently does not take into account that
users would have to investigate all resources attached to a
particular keyword. Hence, the more uncertainty there is on
the articles captured by a node, the more time users have to
invest for searching the list of articles.

5.2 Unconstrained Navigation
We start our navigational analysis with an estimation of

the theoretical navigability of keyword and tag hierarchies.
Thus, we construct hierarchies by using Heymann’s algo-
rithm [14] which does not consider any user interface con-
straints. The algorithm produces broad and flat hierarchies
in which the nodes from the top hierarchies have hundreds
or even thousands of children nodes. Figure 1 shows the de-
gree distributions of the hierarchies depicting the existence
of hub nodes.
The results of the simulation with Mendeley tags are com-

parable with our previous experiments with tagging datasets
from Flickr, Delicious, LastFM, BibSonomy, and CiteULike
[12, 13]. In such theoretical settings Mendeley tags are effi-
ciently navigable. Keyword networks show similar behavior
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Figure 1: Out degree distribution of unconstrained hierarchies. The top hierarchy levels are populated by
high-degree hubs – nodes that have hundreds or even thousands of children nodes. The hierarchies are very
broad and flat.
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Figure 2: Results of the simulation with unconstrained user interface. Top: Average shortest path l, average
hop count h, greedy navigator success rate s and stretch τ – global average values (sg and τg) and distribution
over shortest paths. Theoretical evaluation of Mendeley tag hierarchies produces results comparable to other
tagging datasets. In theory, tag hierarchies support efficient navigation – both success rate and stretch are
close to 1. Similarly, keyword hierarchies aid efficient navigation – success rate and stretch are excellent.
Bottom: Navigator path structure without user interface constraints. The density maps visualize visit fre-
quency to nodes of a given degree at a given distance to the destination node – the color is logarithm of the
visit frequency (black and violet indicating less visits; orange and yellow indicating more visits). As already
observed by [4] in e.g. airport network or the Internet, the navigation path structure follows the zoom-
out/zoom-in phase pattern. In the zoom-out phase, navigation starts at a low degree node in the network
periphery and continues from there by visiting the nodes of increasing degrees into the network core to one
the network hubs there. In the second, zoom-in phase, navigation continues over decreasing node degrees to
its low-degree destination node in the periphery. Over all datasets, the top nodes are the most visited nodes
– these are the nodes from the network core where the phase transition in the navigation process occurs. A
specific property of navigation paths in tagging networks are so-called shortcuts between related mid-degree
nodes occurring at the smaller distances to the destination node (see e.g. white marked region of a large
orange-colored area in 2h). Those shortcuts are taken between sibling tags of a high-degree parent in the
cases where the destination node is situated in the sub-hierarchy of one of the siblings. The density maps
reveal a slightly different path structures between keyword and tag navigation. The green marked regions of
shortcut areas in the keyword navigation (2e and 2g) show that shortcuts between related mid-degree and
siblings are taken less frequently in the case of keyword navigation – high-degree hubs are more frequently
visited in keyword than in tag networks. Since the global success rate and stretch in both networks are
comparable to each other this phenomenon indicates that there exist structural differences between keyword
and tag hierarchies – a possible explanation would be that tag hierarchies are somewhat richer in structure,
i.e. keyword hierarchies more broad and flat. Nevertheless, in this theoretical navigational settings without
any user interface constraints this does not impede the keyword navigation.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8  9  10  11  12  13  14

s
, 
τ

Shortest Path

Greedy Navigator (1000000 Runs)
 l
-
=3.920948, h

-
=9.437887, sg=0.995444, τg=2.407042

Success Rate (s)
Stretch (τ)

(a) K, m = 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8  9  10

s
, 
τ

Shortest Path

Greedy Navigator (1000000 Runs)
 l
-
=3.839867, h

-
=8.499145, sg=0.999316, τg=2.213396

Success Rate (s)
Stretch (τ)

(b) T, m = 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8  9  10

s
, 
τ

Shortest Path

Greedy Navigator (1000000 Runs)
 l
-
=4.020685, h

-
=10.423890, sg=0.998249, τg=2.592566

Success Rate (s)
Stretch (τ)

(c) OK, m = 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8  9  10  11  12

s
, 
τ

Shortest Path

Greedy Navigator (1000000 Runs)
 l
-
=4.062013, h

-
=8.340154, sg=0.998127, τg=2.053207

Success Rate (s)
Stretch (τ)

(d) OT, m = 20

1

91769

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
e
g
re
e

Distance

Greedy Navigator (1000000 Runs)
 Path Structure

 0

 2

 4

 6

 8

 10

 12

ln
(V
is
it
s
)

(e) K, m = 20

1

72584

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
e
g
re
e

Distance

Greedy Navigator (1000000 Runs)
 Path Structure

 0

 2

 4

 6

 8

 10

 12

ln
(V
is
it
s
)

(f) T, m = 20

1

40970

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
e
g
re
e

Distance

Greedy Navigator (1000000 Runs)
 Path Structure

 0

 2

 4

 6

 8

 10

 12

ln
(V
is
it
s
)

(g) OK, m = 20

1

18853

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
e
g
re
e

Distance

Greedy Navigator (1000000 Runs)
 Path Structure

 0

 2

 4

 6

 8

 10

 12

ln
(V
is
it
s
)

(h) OT, m = 20

Figure 3: Results of the simulation with constrained user interface. The number of siblings is limited to
m = 20. Top: Average shortest path l, average hop count h, greedy navigator success rate s and stretch τ

– global average values (sg and τg) and distribution over shortest paths. Although the success rates remain
excellent over all datasets, stretch increases slightly in keyword datasets. This results in path lengths that are
on average longer by 1 or 2 in keyword networks. Bottom: Path structure with user interface constraints. The
green marked regions of shortcut areas in keyword networks (3e and 3g) demonstrate less frequent shortcuts
than in tag networks (white regions in 3f and 3h) explaining the increased stretch values in keyword networks.

– in theory, keywords support efficient navigation. The com-
plete results of the experiments are shown in Figure 2.

5.3 Constrained Navigation
In our next experiments we configure the simulator to re-

flect typical limitations of a standard user interface, e.g. a
directory-like interface, such as Yahoo directory5. Thus, we
model constraints such as limited number of children nodes
that are shown (e.g. 20 children), limited number or related
items (e.g. 20 siblings), or combination of both restrictions.
As we have shown in [12], such restrictions seriously impede
the navigation properties of tag hierarchies and we obtain
similar results for both keyword and tag hierarchies. The
most interesting observation that we make with those exper-
iments is the difference in stretch values for the limitation of
the number of related items that are presented to the user.
In our experiments, we observe increased stretch values for
keyword navigation resulting in one or two more clicks that
are needed on average to reach the destination node. This
result is consistent over all datasets and it might reflect an
intrinsic property of keyword networks and keyword hierar-
chies. Our explanation for this phenomenon is that within a
group of co-occurring keywords there exist a single keyword
which “dominates” the group, i.e. other keywords co-occur
more frequently with that “dominating” keyword and less
frequently with other keywords from the group. The “domi-
nator” becomes a parent node in the hierarchy and all other
nodes are attached as children to that node (see also 6).
Thus, the limitation of the number of siblings that are pre-
sented to the user causes that a longer path over the parent
node is taken and increases the path length by 1 or 2 (see
Figure 3).

5http://dir.yahoo.com/

5.4 Realistic Constrained Navigation
Finally, we want to perform experiments using an alter-

native algorithm for hierarchy induction to better reflect the
realities of user interfaces. We apply the algorithm presented
in [12] that produces balanced hierarchies with a maximal
number of children (we set e.g. 20 children to reflect a typical
user interface limitation). The algorithm produces a nested
sub-hierarchy of so-called misc categories in which it inserts
nodes with the smallest similarities to their parent node. In
a typical case, low-degree nodes from the long tail are in-
serted into such nested misc categories. In our experiments,
we obtain similar results as in experiments limiting the num-
ber of siblings. Consistently and over all datasets, keywords
perform slightly worse exhibiting increased stretch and an
increase of the average number of clicks by 1 (see Figure 4).
Finally, we remove misc categories completely to reflect

another situation – a case where users might not navigate
within misc categories. In those experiments we obtain
smaller success rates that are comparable to each other over
all datasets. As before, we observe an increased stretch in
keyword networks resulting in the average number of clicks
to increase by 1 in those networks (see Figure 5).

6. DISCUSSION
Our results show that in realistic navigational settings -

when we take into account user interface limitations - tag
navigation is slightly more efficient than keyword naviga-
tion. Moreover, tag encoding efficiency is also higher than
keyword encoding efficiency. The density maps reveal the
reason for this finding – there are more shortcuts taken be-
tween mid-degree and high-degree siblings in tag hierarchies
than between such keywords in keyword hierarchies. A pos-
sible cause for that is a lower average overlap between sib-
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Figure 4: Results of the simulation with balanced hierarchies. The number of children and siblings is set
to 20. Top: Average shortest path l, average hop count h, greedy navigator success rate s and stretch τ –
global average values (sg and τg) and distribution over shortest paths. As previously observed the success
rates remain stable and excellent over all datasets, whereas stretch increases slightly in keyword datasets.
This results in path lengths that are on average longer by 1 in keyword networks. Bottom: Navigator path
structure with balanced hierarchies. Again, the green marked regions of shortcut areas in keyword navigation
(4e and 4g) indicate smaller shortcut frequencies than in tag navigation (white ellipses in 4f and 4h).
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Figure 5: Results of the simulation with balanced hierarchies without misc categories. The number of children
and siblings is set to 20. Top: Average shortest path l, average hop count h, greedy navigator success rate s and
stretch τ – global average values (sg and τg) and distribution over shortest paths. The success rates is smaller
than before over all datasets. Again, stretch increases slightly in keyword datasets. Bottom: Navigator path
structure with balanced hierarchies. The green marked regions of shortcut areas in the keyword navigation
(5e and 5g) and white marked regions in tag datasets (5f and 5h) show differences in the number of shortcuts.

ling keywords compared to sibling tags. We will explain
this situation with the following simple example. Suppose
we have an article dealing with navigation in tagging sys-
tems. The authors define the following keywords for this
article: “folksonomy”, “tagging”, “navigation” (see r1 in
Figure 6). Suppose also that the authors calculate entropy

in that article, but do not include “entropy” as a keyword in
their article. Thus, the authors define their single viewpoint
that defines a narrow navigation structure in the proximity
of that article and its keywords. Now, suppose that multiple
users annotate that article with tags. For example, the first
user annotates it with “folksonomy” and “tagging”. The



Figure 6: Two simple examples showing the emer-
gence of hierarchies in keyword networks (left) and
tag networks (right) with metadata “folksonomy”
(F), “tagging” (Tg), “tags” (T), “navigation” (N),
“brwosing” (B), and “entropy” (E). In keyword (nar-
row) folksonomies keywords are applied for group-
ing of articles. On contrary, in tag (broad) folk-
sonomies tags are assigned by many users with mul-
tiple and possible alternative viewpoints. This re-
sults in tag distributions that impose richer overlap
between similar tags. As a consequence the hier-
archies that are based on tag generality and their
mutual similarities are richer in structure than key-
word hierarchies. Our experiments show that those
structurally richer hierarchies are more stable and
robust to the negative effects of the user interface
constraints.

second user annotates it with “navigation”, and the third
user with “entropy” (because that is the most interesting
part of the article for that user). Now, there are multiple
viewpoints on the same article and there are multiple navi-
gational structures that are broader and overlap with each
other. Suppose now that a user is interested in an arti-
cle about entropy. Now a user may reach that article in a
number of alternative ways – one of these paths leads also
over our sample article as its “entropy” tag represents an
entrance to a completely different cluster in the network.
Thus, the user might come from a cluster related to e.g.
social tagging and then upon arriving on the sample arti-
cle take a shortcut over “entropy” tag and enter the en-
tropy cluster. Thus, tags provide different, alternative, and
more heterogeneous access paths to articles. In other words,
tag folksonomies result in tag distributions whereas keyword
folksonomies result in simple almost independent groups of
keywords.

Moreover, such multiple viewpoints from many users tag-
ging the same resource collection result in richer hierarchical
structures – at least under the algorithms that we applied
in our paper. Figure 6 depicts an example with a group of
similar articles dealing with e.g. social tagging systems –
the constructed hierarchies differ in their structures. Richer
structures that emerge in tag hierarchies are more robust
to the restrictions imposed by a user interface – less tags

are affected by e.g. limiting the number of related tags as
compared to more keywords that are removed when we limit
the number of related keywords presented to the user. We
can provide a remedy for this problem of keyword networks
by e.g. enriching the keywords with additional metadata
such as categorizations, or subject descriptors to turn nar-
row keyword folksonomy into a broad folksonomy similar to
the tag folksonomy.

7. CONCLUSIONS

This paper set out to study differences between broad
vs. narrow folksonomies and their usefulness for the task
of navigation. Using data from Mendeley, we created both
broad (based on tags provided by users) and narrow (based
on keywords provided by authors) folksonomies. While our
experiments show that broad and narrow folksonomies ex-
hibit comparable quantitive properties, we find interesting
qualitative differences with regard to navigation. For exam-
ple, broad folksonomies create more efficient navigational
structures that enable users to find target resources with
fewer hops. We find that the reason for better navigational
utility of broad folksonomies can be explained by the fact
that greater overlap between tags provides better options
for users to switch between different parts of the network.
Narrow folksonomies are not able to provide this kind of
support. While our findings are limited to a single dataset
(Mendeley), they warrant future research in this direction.
Our results are relevant for designers of social tagging sys-
tems and for engineers aiming to improve the navigability
of their systems.
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