
Predicting Interactions In Online Social Networks: An
Experiment in Second Life

Michael Steurer
Institute for Information Systems

and Computer Media
Graz University of Technology

Graz, Austria
msteurer@iicm.tugraz.at

Christoph Trattner
Know-Center

Graz University of Technology
Graz, Austria

ctrattner@know-center.at

ABSTRACT
Although considerable amount of work has been conducted
recently of how to predict links between users in online so-
cial media, studies exploiting different kinds of knowledge
sources for the link prediction problem are rare. In this pa-
per latest results of a project are presented that studies the
extent to which interactions – in our case directed and bi-
directed message communication – between users in online
social networks can be predicted by looking at features ob-
tained from social network and position data. To that end,
we conducted two experiments in the virtual world of Sec-
ond Life. As our results reveal, position data features are
a great source to predict interacts between users in online
social networks and outperform social network features sig-
nificantly. However, if we try to predict reciprocal message
communication between users, social network features seem
to be superior.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Information filtering

General Terms
Measurement, Experimentation

Keywords
online social network, location-based, link prediction, vir-
tual worlds
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1. INTRODUCTION
As a part of the recent hype on social network research, a
high amount of attention and research activity was devoted
to the problem of predicting links between users [14], e.g.
the issue of forecasting whether or not two users u and v
of a given social network G〈V,E〉, will interact with each
other in the future. While considerable amount of work
has been conducted recently of how to predict links between
users in online social media, comparing different sources of
knowledge with each other are rare.

To contribute to this research, we present in this paper the
latest results of a research project that aims to study the
extent to which interactions – in our case directed and bi-
directed message communications – in online social networks
can be predicted using both social network and position
data. To tackle this issue we train a binary classifier that
learns the relations between users u and v based on a number
of features induced from social network and position data.
For the purpose of our study we furthermore differentiate
between two types of features – network topological and ho-
mophilic features [18]. Since it is nearly impossible to obtain
rich large-scale real-world social network and position data,
our investigation focuses on the virtual world of Second Life,
where we can easily find and mine both sources of data. We
obtained data from a resource called My Second Life which
is a large-scale online social network for residents of Second
Life. This social network can be compared to Facebook but
aims at a different target group: residents of Second Life
can interact with each other by sharing text messages, com-
ments, and loves. Additionally, we were able to collect posi-
tion data of residents in the virtual world by implementing
so-called in-world bots. These bots collect tracking infor-
mation with accurate timestamp and position information
of surrounding residents and store it persistently. Overall,
it is our interest to answer the following research questions
in this paper:

• To what extent can we predict interactions between
users in online social networks using social network or
position data?

• To what extent can we enhance the predictability of
interactions between users in online social networks
combining both – social network and position data?

To that end, we conducted two experiments in the virtual



Figure 1: Sample of a user profile in the social net-
work My Second Life. As shown, users can post text
message on their wall or can communicate with each
other by commenting or loving onto each other’s
posts.

world of Second Life. As our results reveal, position data fea-
tures are a great source to predict interacts between users in
online social networks outperforming social network features
to a great extent. However, if we try to predict reciprocal
message communication between users, social network fea-
tures seem to be superior.

The remainder of the paper is structured as follows: In Sec-
tion 2, we discuss related work. In Section 3 we shortly intro-
duce the dataset used for our experiments. In Section 4 we
outline the set of features used for our experiments in Sec-
tion 5. Section 6 presents the results of our study. Finally,
Section 7 discusses our findings and Section 8 and Section 9
concludes the paper.

2. RELATED WORK
Although considerable amount of work has been conducted
recently of how to predict links between users in online so-
cial media, studies exploiting different kinds of knowledge
sources for the link prediction problem are rare. An example
is a study conducted by Cranshaw et al. where the authors
collected GPS data and Facebook friendship data through
a mobile app [4]. Based on a number of experiments they
show that the so-called place-entropy feature is best suited
to predict friendship between users in Facebook. Interest-
ingly and contrary to our study, Cranshaw et al. only looked
at the mobile side, i.e. they did not investigate features in-
duced directly from the social network. Furthermore, they
only considered friendship links and did not look at commu-
nication links as we do in our study. Another related work
in this context are the studies of Guy et al. [9, 10, 8] where
the authors investigate the similarity between users exploit-
ing 9 different sources of data classified into three different
classes: people, things, and places. Looking at only semantic
features such as tags they find that the so-called “tagged-
with” feature performs in all three different data category
sources.

Probably one of the first projects investigating the link pre-
diction problem from the network topological perspective in
the context of online social media is a work conducted by
Golder and Yardi [6]. In their paper they study the micro-
blogging service Twitter and find “that two structural char-
acteristics, transitivity and mutuality, are significant predic-
tors of the desire to form new ties”. The first paper inves-
tigating the extent to which reciprocity could be predicted
in the online social media is a recent paper by Cheng et
al. [3]. By applying a rich set of network based features
including link prediction features from [14], they show that
the so-called out-degree measure of a user in Twitter is the
best feature to predict reciprocity. Another interesting work
in this context is a study conducted by Yin et. al [19].
In their paper they investigate the link prediction problem
within the micro-blogging system Twitter. The main con-
tribution, apart from studying the performance of well es-
tablished link prediction methods, is the introduction of a
“novel personalized structure-based link prediction model”
which “noticeably outperforms the state-of-the-art” meth-
ods. The first work studying the computational efficiency of
network topological features in the online domain is a paper
written by Fire et al. [5]. In their work they study a rich
set of features (over 20) on a set of 5 different online social
network sites with respect to their computational efficiency.
Their study reveals that the so-called friends measure shows
a good trade-off between accuracy and computational effi-
ciency.

Another study in this context is a recent study conducted
by Rowe et al. In their work [15] they study the link pre-
diction problem, or the question who will follow whom, in
the microblogging system Weibo. Looking at both semantic
and network topological features they show that the pre-
dictability of links can be significantly improved by training
a classifier that uses both. Although the work of Rowe et
al. has considerable amount of overlap with our own work,
their study only looked at features which could be directly
induced from the online media site Weibo. Hence, contrary
to our own work they did not include external knowledge
such as position data as we do in our study. In contrast to
the work of Rowe et al., the last study to be mentioned is
by Scellato et al. [16] who tried to exploit features from the
location-based social network of Gowalla to predict links. In
contrast to our work, they only focused on position data of
users and did not combine the data with an additional net-
work of interactions as we do in this paper. In their analysis
over a period of three months they found that most of the
links are formed between users that visit the same places or
places that share similar properties.

3. DATASETS
As stated in the introductory part of this paper we con-
ducted our experiments on two types of datasets – social
network and position data – both obtained from the virtual
world of Second Life. The reasons for choosing Second Life
over other real world sources are manifold: First, in con-
trast to networks such as Facebook, the online social net-
work My Second Life does not restrict extensive crawling
of the users profiles. Second, contrary to real world online
social networks most of the profiles in My Second Life are
public, i.e. we can mine a large fraction of the network.
Third, in virtual worlds the position information of users



can be harvested in an automated way whereas it is nearly
impossible to obtain large-scale tracking data of users in the
real world. In this section we describe the collection process
for the data as used in our experiments.

3.1 Position Dataset
The collection of position data of users in Second Life is a
two stage process: First, a list of popular locations from the
Second Life Event calendar1 were crawled. Second, over-
all 15 in-world agents, the so-called in-world-bots, were im-
plemented to teleport to these locations to gather position
information about the present users.

In detail the procedure was the following: In order to harvest
all events in Second Life we implemented a Web-crawler that
runs on a daily bases to obtain all publicly announced events
on the Second Life Event calendar. Overall, we were able to
obtain data of 218,245 unique events during a period of ten
months starting in March 2012.

To collect position data of the users we implemented 15 in-
world agents on the basis of the open source command-line
client libopenmetaverse2. Due to the modularity of the tool,
we were able to enhance the functionality of our agents to
teleport around in the virtual world to collect position data
of all surrounding users in a region. This position informa-
tion comprises the current region, x and y coordinates of the
position within this region, and a timestamp (see Figure 2).
The pool of agents was controlled by a centralized instance
sending our in-world bots to ongoing events. Due to the
large amount of concurrent events in several regions of Sec-
ond Life and the constraint that a bot is only able to obtain
data of one single region at the same time, our sampling rate
was set to a limit of 15 minutes. All in all, we were able to
obtain over 13 Million data samples of 190,160 unique users
visiting events with this kind of approach [17].

3.2 Social Network Dataset
In July 2011 Linden Labs introduced an online social net-
work called My Second Life3 similar to other online social
networks such as Google+ or Facebook. Residents of the
virtual world can log-in with their in-world credentials, ac-
cess their friend lists and have a so-called Feed that can
be compared to the Google+ Stream or the Facebook Wall.
The social interaction with other users is done by sharing
text messages, screenshots, comments and so-called loves
which can be seen equally to a Like on Facebook or a Plus
in Google+ (see Figure 1). Furthermore, users can enhance
their profiles by adding personal information such as inter-
ests, groups, etc.

Overall, we downloaded the profile data of 190,160 users
found by our in-world agents, parsed the interaction partners
of the these users and downloaded the profile information of
the missing ones. This procedure was repeated until the
crawler could not find any more new users. Finally, this
approach yields in a dataset of 311,959 users with 135,181
having interactions on their feed.

1http://secondlife.com/community/events/
2http://lib.openmetaverse.org/
3https://my.secondlife.com/

Figure 2: A map section in Second Life with users
represented as white dots. The in-world agent vis-
iting the region periodically is outlined as a crossed
white dot.

4. FEATURE SETS
As already outlined, it is our aim to predict interactions be-
tween users in online social networks based on two types
of knowledge sources – social network and position data of
the users. To that end, we induce two different types of
feature sets from our data sources: network topological and
homophilic features [18]. In order to start with the descrip-
tion of the different features calculated for our experiments,
we first describe the networks derived from the collected
data.

The first network, referred to as social network, is based on
the data obtained from the users profile where every edge
in this directed network indicates communication between
two users. This yields in a network with 135,181 users and
209,653 edges. The second network, referred to as position
network, is based on the users position data where every edge
in the undirected network indicates that two users were seen
concurrently in the same region on two different days. This
yields in a network with 131,349 nodes and 2,343,683 edges.
A summary of both networks can be found in Table 1.

4.1 Social Network: Topological Features
In social networks such as Facebook or Google+ the friend-
ship of users is based on a mutual agreement where both
confirm each other. In contrast to this, users of the online so-
cial network My Second Life can post onto each others’ walls
without this mutual agreement. Hence, as a consequence, we
consider the social network as a directed graph GF 〈VF , EF 〉
with VF representing the users where e = (u, v) ∈ EF if user
u posted, commented, or liked something on the feed of user
v.

We define the set of the neighbors of a node v ∈ GF as
Γ(v) = {u | (u, v) ∈ EF or (v, u) ∈ EF }, Based on this
definition of neighborhood we can define the following topo-
logical features:

• Common Neighbors FCN (u, v). This is the number of



Table 1: Networks used for the experiments
Name Type Nodes Edges Degree

Position GM undirected 131,349 2,343,683 35.7
Social GF directed 135,181 209,653 3.1
Social + Position GFM directed 37,118 1,043,172 56.2

interaction-partners two users have in common.

FCN (u, v) = |Γ(u) ∩ Γ(v)|

For a directed network we can split this into the num-
ber of common users F+

CN (u, v) = |Γ+(u) ∩ Γ+(v)| to
which both users send messages to and the number of
users F−CN (u, v) = |Γ−(u) ∩ Γ−(v)| from which both
users receive messages.

• Jaccard’s Coefficient FJC(u, v). The ratio of the to-
tal number of neighbors and the number of common
neighbors of two users is taken from [12] and is defined
as follows.

FJC(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

For directed networks this can be split into two coeffi-

cients for receiving messages F−JC(u, v) = |Γ−(u)∩Γ−(v)|
|Γ−(u)∪Γ−(v)|

and sending messages F+
JC(u, v) = |Γ+(u)∩Γ+(v)|

|Γ+(u)∪Γ+(v)| .

• Adamic Adar FAA(u, v). Instead of just counting the
number of common neighbors with Jaccard’s Coeffi-
cient in a network, this feature adds weights to all
neighbors of a pair of users [1].

FAA(u, v) =
∑

z∈Γ(u)∩Γ(v)

1

log(|Γ(z)|)

According to Cheng et al. this can be transformed
into F−AA(u, v) =

∑
z∈Γ−(u)∩Γ−(v)

1
log(|Γ−(z)|) for directed

networks [3].

• Preferential Attachment Score FPS(u, v). This feature
takes into account that active users, i.e. users with
many interaction partners, are more likely to form
new relationships than users with not so many inter-
actions [2].

FPS(u, v) = |Γ(u)| · |Γ(v)|

The score can be applied to a directed network with
two different features: F+

PS(u, v) = |Γ+(u)| · |Γ−(v)|,
respectively F−PS(u, v) = |Γ−(u)| · |Γ+(v)| [3].

4.2 Social Network: Homophilic Features
As stated before, users in Second Life can enhance their so-
cial network profile by adding additional meta-data informa-
tion such as interests or groups. As observed by a number of
previous studies in this area [15, 18], homophily is an impor-
tant variable in the context of the link prediction problem.
To account for factor, we define a set of homophilic features
which we calculate as group and interest similarity between
users u, v. Formally, we define the groups of a user u as
∆(u), respectively her interests as Ψ(u).

• Common Groups GC(u, v). The first feature we in-
duce is the so-called common groups measure. It is
calculated as follows.

GC(u, v) = |∆(u) ∩∆(v)|

• Jaccard’s Coefficient for Groups GJC(u, v). The sec-
ond feature, is the so-called Jaccard’s coefficient for
groups. It is calculated in the following form.

GJC(u, v) =
|∆(u) ∩∆(v)|
|∆(u) ∪∆(v)|

• Common Interests IC(u, v). The third homophilic fea-
ture, is the number of interests two users have in com-
mon.

IC(u, v) = |Ψ(u) ∩Ψ(v)|

• Jaccard’s Coefficient for Interests IJC(u, v). And fi-
nally the last feature, which is a combination of total
interests and common interests of the users.

IJC(u, v) =
|Ψ(u) ∩Ψ(v)|
|Ψ(u) ∪Ψ(v)|

4.3 Position Network: Topological Features
We can apply the same network topological feature calcula-
tions to the position network as we did for the social net-
work. The network has edges between users that met on at
least two days. Using this relation between in-world users
we can define the topological features similar to Section 4.1.
Here, the neighbors of a node in the undirected position net-
work GM 〈VM , EM 〉 are defined as Θ(u) = {v | (u, v) ∈ GM}
and starting with this we define the topological features as
follows.

• Common Neighbors MCN (u, v).

MCN (u, v) = |Θ(u) ∩Θ(v)|

• Jaccard’s Coefficient MJC(u, v).

MJC(u, v) =
|Θ(u) ∩Θ(v)|
|Θ(u) ∪Θ(v)|

• Adamic Adar MAA(u, v).

MAA(u, v) =
∑

z∈Θ(u)∩Θ(v)

1

log(|Θ(z)|)

• Preferential Attachment Score MPS(u, v).

MPS(u, v) = |Θ(u)| · |Θ(v)|



4.4 Position Network: Homophilic Features
These features are based on the actual distance between
users, the regions they visit, and the number of days where
they co-occurred concurrently. Let O(u, v) be the co-lo-
cations of user u and user v, when both users reside in the
same region concurrently. An observation o ∈ O(u, v) is 4-
tuple of region r, time stamp t, location coordinates of user
u: lu = (xu, yu) and user v: lv = (xv, yv).

• Physical Distance MD(u, v). Whenever two users are
observed concurrently, we can measure the distance
between them based on their x and y coordinates.
As a measure for their overall physical closeness, we
can therefore compute the average physical Euclidean
distance between two users for all observations where
both are present in the same region concurrently.

MD(u, v) =
1

|O(u, v)|
∑

o∈O(u,v)

‖o(lu)− o(lv)‖

• Days Seen MD(u, v). This feature indicates the num-
ber of days when two users have been observed in the
same region concurrently.

The regions of a user are defined as P (u) = {ρ ∈ P | user u
was observed in region P} and so we can compute the region
properties of users as follows:

• Common Regions RC(u, v). The number of regions
two users visited, not necessarily at the same time.

RC(u, v) = |P (u) ∩ P (v)|

• Regions Seen Concurrently RS(u, v). In contrast to
the Common Regions feature, this feature takes only
the regions into account where both users have been
observed in the same region concurrently.

• Observations Together RO(u, v). This feature is taken
from Cranshaw et al. [4] and represents the number of
total regions of two users divided by the sum of each
user’s number of regions.

RO(u, v) =
|Pu ∪ Pv|
|Pu|+ |Pv|

5. EXPERIMENTAL SETUP
We conducted two different experiments using two different
datasets and features to study the extent to which interac-
tions between users in online social networks can be pre-
dicted. These experiments are based on the social network
GF and the position network GM dataset as described in
Section 4.

In the first experiment we try to predict the interactions
between users in the social network and in the second ex-
periment we try to predict whether these links are reciprocal
or not. In both experiments we follow the approach of Guha
et al. [7] who suggest to create two datasets with an equal
number of “positive edges” and “negative edges” for the bi-
nary classification problem which yields in balanced datasets
for the test- and the training data and therefore in a baseline

of 50% for the prediction when guessing randomly. For the
evaluation measures we follow the approaches of Leskovec
and Rowe et al. [13, 15], i.e. we employed the binomial Lo-
gistic Regression algorithm and use the area under the ROC
curve (AUC) and the accuracy of the prediction (ACC) as
evaluation metrics. Furthermore, we used a 10-fold cross
validation approach to justify our findings. For both exper-
iments we used the binomial Logistic Regression algorithm
of the WEKA machine-learning suite [11]. In the following
sections we describe in detail how the trainings- and test
data for both experiments were generated.

5.1 Predict Interactions
The task here is to predict whether two users interact with
each other on the feed by exploiting topological and ho-
mophilic information of the social network and the position
network. The experiment is based on the combination of the
directed social network GF 〈VF , EF 〉 and the undirected po-
sitions network GM 〈VM , EM 〉. In the first step we compute
the edge-features for the user-pairs as described in Section 4
for both networks independently. Then, in the second step
we create the intersection of both networks as a directed
graph GFM 〈VFM , EFM 〉 where VFM = {v|v ∈ VF , v ∈ VM},
and EFM = {(u, v)|(u, v) ∈ EM , (u, v) ∈ EF , v and u ∈
VFM}. This newly created network consists of 37,118 nodes
and 1,014,352 pairs with position co-occurrences ((u, v) ∈
EM ), 36,213 pairs with social interaction ((u, v) ∈ EF ), and
7,393 edges with both ((u, v) ∈ EM , EF ).

For the binary classification problem we uniformly select
2,500 user-pairs with a social interaction and a position co-
occurrence (“positive edges”) {e+ = (u, v)|e+ ∈ EFM , e

+ ∈
EF , e

+ ∈ EM} and 2,500 user-pairs with a position co-
occurrence but without a social interaction (“negative edges”)
{e− = (u, v)| e− /∈ EF , e

− ∈ EM}. These edges, i.e. pairs
of users, and the according edge features are used as data
set for the learning algorithm.

5.2 Predict Reciprocity
The task here is to predict whether two users have mutual
activities on each other’s wall, i.e. reciprocal interactions,
by exploiting topological and homophilic information of the
social network and the position network. We define a re-
ciprocal edge as e′′ = (u, v)|(u, v) ∈ GF , (v, u) ∈ GF , a
non-reciprocal edge as e′ = (u, v)|(u, v) ∈ GF , (v, u) /∈ GF

and use this difference for the binary classification prob-
lem. In contrast to the previous experiment we consider
the social network as undirected network for the compu-
tation of the edge-features described in Section 4 but re-
tain information about the reciprocity of the interactions.
The edge features for the position network are again con-
sidered as undirected. For the actual experiment we com-
bine the social network and the position network to a new
undirected network referred to as G′FM 〈V ′FM , E

′
FM 〉 where

V ′FM = {v|v ∈ VF , v ∈ VM}, and E′FM = {(u, v)|(u, v) ∈
EM , (u, v) ∈ EF or (v, u) ∈ EF , v and u ∈ V ′FM}. Out of
the 7,393 user-pairs with a social interaction and a position
co-occurrence we could identify 1,431 reciprocal edges and
4,531 non-reciprocal edges in the social network.

For the binary classification task we uniformly selected pairs
of users from the undirected network G′FM with 1,000 re-
ciprocal edges (“positive edges”) and non-reciprocal edges



Table 2: Overall results of the area under the ROC curve (AUC) and the accuracy (ACC) for predicting
interactions and reciprocity between users in the online social network of Second Life using social network
and position network features.

Feature Sets Interactions Reciprocity

Social
Network

Topological 0.878 (71.8%) 0.676 (64.9%)
Homophilic 0.640 (63.4%) 0.507 (52.5%)
Combined 0.863 (76.8%) 0.679 (64.8%)

Position
Network

Topological 0.858 (76.7%) 0.530 (51.2%)
Homophilic 0.885 (80.6%) 0.556 (54.4%)
Combined 0.919 (84.8%) 0.551 (53.5%)

All Features 0.953 (89.6%) 0.709 (65.2%)

Table 3: Detailed results of the area under the ROC curve (AUC) and the accuracy (ACC) for predicting
interactions and reciprocity between users in the online social network of Second Life using only social network
features.

Features Predict Interaction Predict Reciprocity

S
oc

ia
l

N
et

w
o
rk Topological

Features

Common Neighbors FCN (u, v) - 0.678 (64.4%)
Common Neighbors (out) F+

CN (u, v) 0.606 (61.0%) -
Common Neighbors (in) F−CN (u, v) 0.626 (63.1%) -
Adamic Adar FAA(u, v) - 0.681 (65.4%)
Adamic Adar (in) F−AA(u, v) 0.656 (62.8%) -
Jaccard’s Coefficient FJC(u, v) - 0.651 (61.6%)
Jaccard’s Coefficient (out) F+

JC(u, v) 0.888 (70.5%) -
Jaccard’s Coefficient (in) F−JC(u, v) 0.606 (60.7%) -
Preferential Attachment FPS(u, v) - 0.630 (55.0%)
Preferential Attachment (out) F+

PS(u, v) 0.888 (70.5%) -
Preferential Attachment (in) F−PS(u, v) 0.619 (60.7%) -

Homophilic
Features

Common Groups GC(u, v) 0.629 (60.8%) 0.494 (50.8%)
Jaccard’s Coefficient GJC(u, v) 0.633 (62.8%) 0.503 (51.4%)
Common Interests IC(u, v) 0.510 (51.3%) 0.511 (52.0%)
Jaccard’s Coefficient IJC(u, v) 0.511 (51.4%) 0.511 (52.0%)

(“negative edges”) each. The edges, i.e. user-pairs with the
according features, are again used for the learning algorithm.

6. RESULTS
In this section we present the results obtained from the two
experiments.

6.1 Predict Interactions: Social Network vs.
Position Network Features

The results of the first experiment can be found in Table 2
where we show the differences and similarities between the
two sources of knowledge and the features. The values in
the table represent the area under the ROC curve (AUC)
and the accuracy of the prediction (ACC) as metrics for
the predictability. The baseline for the binary classifica-
tion problem is 0.5 (AUC). As we can see, using topological
features for our classifier from the social network improves
the predictability of interactions between users by +37.8%
whereas homophilic features (groups and interests) enhance
the baseline by +14.0%. In contrast to this, we can see that
topological features from the position network improve the
baseline approach by +35.8% whereas homophilic features
improve the baseline by +38.5%.

Overall, and interestingly, looking at the “combined feature”
set in Table 2 we can see that position data features are a
great source to predict interactions between users in online

social networks outperforming social network features sig-
nificantly. In Table 3 and 4 one can find an overview of each
single feature, with best the features highlighted in bold let-
ters.

6.2 Predict Reciprocity: Social Network vs.
Position Network Features

The results of the second experiment can be found in Ta-
ble 2 where we again present the area under the ROC curve
(AUC) and the accuracy of the prediction (ACC). Due to
the balanced dataset our baseline is again 0.5 (AUC).

As we can see, using topological features for our classifier
improves the predictability of interactions between users by
+17.6% whereas homophilic features alone (groups and in-
terests) perform as bad as the baseline approach. In contrast
to this, we can see that topological features from the posi-
tion network improve the baseline approach by +3.0% for
the topological features and by +5.6% for the homophilic
features.

Interestingly, and contrary to the predictability of interac-
tions, we can see from the “combined feature” set in Table 2
that social network features seem to be superior to posi-
tion network features, if we try to predict the reciprocity
of users. In Table 3 and 4 we also present the predictive
power of each single feature used for our experiments. Best



Table 4: Detailed results of the area under the ROC curve (AUC) and the accuracy (ACC) for predicting
interactions and reciprocity between users in the online social network of Second Life using only position
network features.

Features Predict Interaction Predict Reciprocity

P
o
si

ti
o

n
N

et
w

o
rk

Topological
Features

Common Neighbors MCN (u, v) 0.566 (51.5%) 0.539 (51.7%)
Jaccard’s Coefficient MJC(u, v) 0.734 (59.1%) 0.521 (51.2%)
Preferential Attachment MPS(u, v) 0.754 (60.5%) 0.520 (51.7%)
Adamic Adar MAA(u, v) 0.662 (58.1%) 0.508 (51.6%)

Homophilic
Features

Regions Seen RS(u, v) 0.708 (69.5%) 0.513 (51.1%)
Common Regions RC(u, v) 0.566 (51.5%) 0.503 (50.5%)
Observations Together RO(u, v) 0.800 (72.2%) 0.543 (53.3%)
Distance MD(u, v) 0.821 (66.5%) 0.534 (52.8%)
Days Seen MD(u, v) 0.627 (59.0%) 0.496 (50.8%)

features are again highlighted with bold letters.

7. DISCUSSIONS
In conclusion, the results of both experiments show that the
predictability of interactions and reciprocity between users
in the social network of Second Life can be significantly im-
proved if we train our classifier on both sets of features –
social network and position network features. Furthermore,
we observe that interactions can be better predicted 0.953
(AUC) than reciprocity 0.709 (AUC). What is also interest-
ing to note is the fact that social network topological features
perform better than social network homophilic features for
predicting interactions and reciprocity. The opposite could
be observed for position network topological and homophilic
features.

Besides the Logistic Regression approach suggested in [13,
15] we also tested other learning strategies such as Sup-
port Vector Machines and Decision Trees (C4.5) as described
in [5] for both experiments. However, for the sake of space
we present only the best results which we obtained with the
Logistic Regression approach.

8. CONCLUSIONS
In this paper we presented latest results of a project that
studies the extent to which interactions between users in
online social networks can be predicted exploring features
obtained from social network and position data. To that
end, we conducted two experiments in the virtual world of
Second Life. As our results revealed, position data features
are a great source to predict interactions between users in
online social networks outperforming social network features
significantly. However, if we try to predict reciprocal mes-
sage communication between users, social network features
seem to be superior.

9. FUTURE WORK
Overall, we believe that the findings presented in this paper
open new perspectives for further research in the scope of
virtual worlds as well as in the real world. For future work,
it is planned to dig deeper into the data and to address issues
such as the variety of time (which we did not address in this
study) or the issue why reciprocal links seem to be better
predicted with social network features than with position
data. Furthermore, we plan to extend our approach to pre-
dict other relations between users besides communicational
interactions such as for instance partnership which can be

also mined from the social network of Second Life. Finally,
it is our interest to switch from supervised to unsupervised
learning.
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